Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨)1,2, Hong-Wei Li(李宏伟)1,2,†, Chun Zhou(周淳)1,2, Yang Wang(汪洋)1,2, Yi-Fei Lu(陆宜飞)1,2, Mu-Sheng Jiang(江木生)1,2, Xiao-Xu Zhang(张晓旭)1,2, and Wan-Su Bao(鲍皖苏)1,2,‡
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China; 2 Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract Quantum key distribution provides an unconditional secure key sharing method in theory, but the imperfect factors of practical devices will bring security vulnerabilities. In this paper, we characterize the imperfections of the sender and analyze the possible attack strategies of Eve. Firstly, we present a quantized model for distinguishability of decoy states caused by intensity modulation. Besides, considering that Eve may control the preparation of states through hidden variables, we evaluate the security of preparation in practical quantum key distribution (QKD) scheme based on the weak-randomness model. Finally, we analyze the influence of the distinguishability of decoy state to secure key rate, for Eve may conduct the beam splitting attack and control the channel attenuation of different parts. Through the simulation, it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness, especially when Eve can control the channel attenuation.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309702), NSAF (Grant No. U2130205), the National Natural Science Foundation of China (Grant Nos. 62101597, 61605248, and 61505261), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:
Hong-Wei Li, Wan-Su Bao
E-mail: lhw@qiclab.cn;bws@qiclab.cn
Cite this article:
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏) Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states 2023 Chin. Phys. B 32 050305
[1] Bennett C H and Brassard G 1984 Theor. Comput. Sci.560 7 [2] Lo H K and Chau H F 1999 Science283 2050 [3] Shor P W and Preskill J 2000 Phys. Rev. Lett.85 441 [4] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A72 012332 [5] Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett.85 1330 [6] Hwang W Y 2003 Phys. Rev. Lett.91 057901 [7] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett.94 230504 [8] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A72 012326 [9] Wang X B 2005 Phys. Rev. Lett.94 230503 [12] Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett.98 010503 [13] Dixon A R, Yuan Z L, Dynes J F, Sharpe A W and Shields A J 2008 Opt. Express16 18790 [10] Liao S K, Yong H L, Liu C, et al. 2017 Nat. Photonics11 509 [11] Yin H L, Fu Y, Liu H, Tang Q J, Wang J, You L X, Zhang W J, Chen S J, Wang Z, Zhang Q, Chen T Y, Chen Z B and Pan J W 2017 Phys. Rev. A95 032334 [14] Huang A, Sun S H, Liu Z and Makarov V 2018 Phys. Rev. A98 012330 [15] Maan P 2022 Phys. Rev. B128 178 [16] Li H W, Xu Z M and Cai Q Y 2018 Phys. Rev. A98 062325 [17] Li H W, Yin Z Q, Wang S, Qian Y J, Chen W, Guo G C and Han Z F 2015 Sci. Rep.5 16200 [18] Li H W, Xu Z M, Yin Z Q and Cai Q Y 2020 Phys. Rev. A102 022605 [19] Sun S H, Tian Z Y, Zhao M S and Ma Y 2020 Sci. Rep.10 18145 [20] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A73 022320 [21] Jain N, Anisimova E, Khan I, Makarov V, Marquardt C and Leuchs G 2014 New J. Phys.16 123030 [22] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A78 042333 [23] Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A84 062308 [24] Sajeed S, Chaiwongkhot P, Bourgoin J P, Jennewein T, Lutkenhaus N and Makarov V 2015 Phys. Rev. A91 062301 [25] Qian Y J, Li H W, He D Y, Yin Z Q, Zhang C M, Chen W, Wang S and Han Z F 2015 Chin. Phys. B24 090305 [26] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett.108 130503 [27] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum3 020315 [28] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature557 400 [29] Yin H L and Chen Z B 2019 Sci. Rep.9 14918 [30] Yin H L and Chen Z B 2019 Sci. Rep.9 17113 [31] Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto Y, Shimada K, Honma Y, Sohma K, Fujii T and Hasegawa T 2018 Journal of Lightwave Technology36 44 [32] Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L and Chen Z B 2021 PRX Quantum2 040334 [33] Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A94 032335 [34] Lim C C W, Curty M, Walenta N, Xu F and Zbinden H 2014 Phys. Rev. A89 022307 [35] Azuma K 1967 Tohoku Math. J.19 357 [36] Hasegawa T, Tamura Y, Sakuma H, Kawaguchi Y, Yamamoto Y and Koyano Y 2018 SEI Tech. Rev.86 18 [37] Rusca D, Boaron A, Grunenfelder F, Martin A and Zbinden H 2018 Appl. Phys. Lett.112 171104
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.