Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050307    DOI: 10.1088/1674-1056/acac09
GENERAL Prev   Next  

On the complete weight distributions of quantum error-correcting codes

Chao Du(杜超)1,2, Zhi Ma(马智)1,2,†, and Maosheng Xiong(熊茂胜)3,‡
1 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhenghzhou 450001, China;
2 Henan Key Laboratory of Network Cryptography Technology, Zhenghzhou 450001, China;
3 Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
Abstract  In a recent paper, Hu et al. defined the complete weight distributions of quantum codes and proved the MacWilliams identities, and as applications they showed how such weight distributions may be used to obtain the singleton-type and hamming-type bounds for asymmetric quantum codes. In this paper we extend their study much further and obtain several new results concerning the complete weight distributions of quantum codes and applications. In particular, we provide a new proof of the MacWilliams identities of the complete weight distributions of quantum codes. We obtain new information about the weight distributions of quantum MDS codes and the double weight distribution of asymmetric quantum MDS codes. We get new identities involving the complete weight distributions of two different quantum codes. We estimate the complete weight distributions of quantum codes under special conditions and show that quantum BCH codes by the Hermitian construction from primitive, narrow-sense BCH codes satisfy these conditions and hence these estimate applies.
Keywords:  quantum codes      complete weight distributions      MacWilliams identities      BCH codes  
Received:  07 September 2022      Revised:  15 December 2022      Accepted manuscript online:  16 December 2022
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61972413, 61901525, and 62002385), the National Key R&D Program of China (Grant No. 2021YFB3100100), and RGC under Grant No. N HKUST619/17 from Hong Kong, China.
Corresponding Authors:  Zhi Ma, Maosheng Xiong     E-mail:  ma_zhi@163.com;mamsxiong@ust.hk

Cite this article: 

Chao Du(杜超), Zhi Ma(马智), and Maosheng Xiong(熊茂胜) On the complete weight distributions of quantum error-correcting codes 2023 Chin. Phys. B 32 050307

[1] Calderbank A, Rains E, Shor P and Sloane N 1997 Proceedings of IEEE International Symposium on Information Theory, June 29-July 4, 1997, Ulm, Germany, p. 292
[2] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[3] Shor P W 1995 Phys. Rev. A 52 2493(R)
[4] Steane A M 1996 Phys. Rev. Lett. 77 793
[5] Steane A M 1996 Proc. Roy. Soc. London A 452 2551
[6] Fletcher A S, Shor P W and Win M Z 2008 IEEE Trans. Inform. Theory 54 5705
[7] Ioffe L and Mézard M 2007 Phys. Rev. A 75 032345
[8] Wang L, Feng K, Ling S and Xing C 2010 IEEE Trans. Inform. Theory 56 2938
[9] Shor P W and Laflamme R 1997 Phys. Rev. Lett. 78 1600
[10] Rains E M 1999 IEEE Trans. Inform. Theory 45 2361
[11] Rains E M 1998 IEEE Trans. Inform. Theory 44 1388
[12] Rains E M 2000 IEEE Trans. Inform. Theory 46 54
[13] Rains E M 1999 IEEE Trans. Inform. Theory 45 2489
[14] Ashikhmin A and Litsyn S 1998 IEEE Trans. Inform. Theory 45 1206
[15] Lai C Y and Ashikhmin A 2018 IEEE Trans. Inform. Theory 64 622
[16] Ashikhmin A, Barg A, Knill E and Litsyn S 2000 IEEE Trans. Inform. Theory 46 778
[17] Scott A J 2005 Quantum Inf. Process. 4 399
[18] Blake I F and Kith K 1991 SIAM J. Discret. Math. 4 164
[19] Ding C and Wang X 2005 Theor. Comput. Sci. 330 81
[20] MacWilliams F J and Sloane N J A 1981 The theory of error-correcting codes Vol I and I!I (Holland: North-Holland Mathematical Library)
[21] Hu C, Yang S and Yau S S T 2020 Adv. Appl. Math. 121 102085
[22] Hu C, Yang S and Yau S S T 2019 IEEE Access 7 68404
[23] Huber F and Grassl M 2020 Quantum 4 284
[24] Chan C and Xiong M 2019 IEEE Trans. Inform. Theory 65 7079
[25] Ketkar A, Klappenecker A, Kumar S and Sarvepalli P K 2006 IEEE Trans. Inform. Theory 52 4892
[26] Ashikhmin A and Knill E 2001 IEEE Trans. Inform. Theory 47 3065
[27] Knill E 1996 U.S. Department of Energy Office of Scientific Technical Information Technical Reports Report No. LA-UR-96-2717 ON: DE96014435
[28] Feng K and Chen H 2010 Quantum Error-Correcting Codes (Beijing: Science Press) (in Chinese)
[29] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press)
[30] Huffman W C and Pless V 2003 Fundamentals of Error-Correcting Codes (Cambridge: Cambridge University Press)
[31] Luo L, Ma Z, Wei Z and Leng R 2017 Sci. China Inf. Sci. 60 42501
[32] Rains E M 1999 IEEE Trans. Inform. Theory 45 1827
[33] Aly S A 2008 arXiv: 0803.0764 [quant-ph]
[34] Sharma B D and Sookoo N 2011 J. Discrete Math. Sci. Cryptogr. 14 503
[35] Grassl M, Beth T and Rötteler M 2004 Int. J. Quantum Inf. 2 55
[36] Fang W and Fu F W 2018 Finite Fields Appl. 53 85
[37] Fang W and Fu F W 2019 IEEE Trans. Inform. Theory 65 7840
[38] Jin L, Ling S, Luo J and Xing C 2010 IEEE Trans. Inform. Theory 56 4735
[39] Jin L and Xing C 2014 IEEE Trans. Inform. Theory 60 2921
[40] Zhang T and Ge G 2017 Des. Codes Cryptogr. 83 503
[41] Shi X, Yue Q and Zhu X 2017 Finite Fields Appl. 46 347
[42] Kai X and Zhu S 2012 IEEE Trans. Inform. Theory 59 1193
[43] Jin L, Kan H and Wen J 2017 Des. Codes Cryptogr. 84 463
[44] Zhang G and Chen B 2014 Int. J. Quantum Inf. 12 1450019
[45] Chen B, Ling S and Zhang G 2015 IEEE Trans. Inform. Theory 61 1474
[46] Li S, Xiong M and Ge G 2016 IEEE Trans. Inform. Theory 62 1703
[47] Grassl M and Rötteler M 2015 IEEE International Symposium on Information Theory (ISIT), June 14-19, 2015, Hong Kong, China, p. 1104
[48] Ball S 2021 Des. Codes Cryptogr. 89 811
[49] Zhang T and Ge G 2015 IEEE Trans. Inform. Theory 61 5224
[50] Kai X, Zhu S and Li P 2014 IEEE Trans. Inform. Theory 60 2080
[51] Dinh H Q, Nguyen B T and Yamaka W 2020 IEEE Access 8 124608
[52] Dinh H Q, Le H T, Nguyen B T and Maneejuk P 2021 IEEE Access 9 138543
[53] Dinh H Q, Nguyen B T and Yamaka W 2020 IEEE Access 8 124608
[54] Chen J Z, Li J P and Lin J 2014 Int. J. Theor. Phys. 53 72
[55] Chen J, Li J, Huang Y and Lin J 2015 Linear Algebra Appl. 475 186
[56] Ezerman M F, Jitman S, Kiah H M and Ling S 2013 Int. J. Quantum Inf. 3 1350027
[57] Vlǎduts S G and Skorobogatov A N 1991 Problems Inform. Transmission 27 19
[58] Aly S A, Klappenecker A and Sarvepalli P K 2007 IEEE Trans. Inform. Theory 53 1183
[59] La Guardia G G 2014 IEEE Trans. Inform. Theory 60 1528
[60] Cohen G, Encheva S and Litsyn S 1999 Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253) June 25, 1999, Kruger National Park, South Africa, p. 127
[61] Steane A 1999 IEEE Trans. Inform. Theory 45 2492
[62] Aly S A, Grassl M, Klappenecker A, Rotteler M and Sarvepalli P K 2007 10th Canadian Workshop on Information Theory (CWIT), June 6-8, 2007, Edmonton, AB, Canada, p. 180
[63] La Guardia G G 2014 IEEE Trans. Inform. Theory 60 304
[64] Niehage A 2006 Quantum Inf. Process. 6 143
[65] Desaki Y, Fujiwara T and Kasami T 1997 IEEE Trans. Inform. Theory 43 1364
[66] Fujiwara T, Desaki Y, Sugita T and Kasami T 1997 Proceedings of IEEE International Symposium on Information Theory, June 29-July 4, 1997, Ulm, Germany, p. 363
[67] Aly S A, Klappenecker A and Sarvepalli P K 2006 IEEE International Symposium on Information Theory, July 9-14, 2006, Seattle, WA, USA, p. 1114
[68] Delsarte P 1975 IEEE Trans. Inform. Theory 21 575
[69] Schmidt W M 2004 Equations over finite fields: an elementary approach 2nd edn. (Berlin: Springer)
[1] Degenerate asymmetric quantum concatenated codes for correcting biased quantum errors
Ji-Hao Fan(樊继豪), Jun Li(李骏), Han-Wu Chen(陈汉武), and Wen-Jie Liu(刘文杰). Chin. Phys. B, 2021, 30(12): 120302.
No Suggested Reading articles found!