|
|
One-shot detection limits of time-alignment two-photon illumination radar |
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平)†, Hua Zhang(张华)‡, Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷) |
School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China |
|
|
Abstract Quantum radar has recently gained increasing importance in a number of military applications. The estimation accuracy of one-shot quantum illumination events is significant in target detection. However, the accuracy is inevitably deteriorated by measurement noises. The traditional one-shot illumination emits a single photon towards a certain area which thermal noise exists in the path to, and the states of the received photons are hard to distinguish in the following processing. Therefore, a new optical probe source is proposed in this work. The independent detecting unit in the enhanced illumination is comprised of two photons aligned in time by using Hong-Ou-Mandel (HOM) interferometer. Further, one-shot detection in a general discrete model is realized and it proves a significant promotion in accuracy. The expansion of useful parts in parameter space and the lower minimal error probability for hypothesis testing have been mathematically demonstrated. The accuracy of one-shot detection can be effectively improved by the proposed scheme implying that it possesses great potential applications in quantum illumination and imaging.
|
Received: 16 August 2022
Revised: 29 October 2022
Accepted manuscript online: 03 November 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.55.Tv
|
(Photonic crystal lasers and coherent effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071363) and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2021LLRH-06). |
Corresponding Authors:
Lu-Ping Xu, Hua Zhang
E-mail: Lpxu@mail.xidian.edu.cn;zhanghua@mail.xidian.edu.cn
|
Cite this article:
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷) One-shot detection limits of time-alignment two-photon illumination radar 2023 Chin. Phys. B 32 050304
|
[1] Fan L and Zubairy M S 2018 Phys. Rev. A 98 012319 [2] Lee S Y, Ihn Y S and Kim Z 2021 Phys. Rev. A 103 012411 [3] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro J H 2008 Phys. Rev. Lett. 101 253601 [4] Zhang S, Guo J, Bao W, Shi J, Jin C, Zou X and Guo G 2014 Phys. Rev. A 89 062309 [5] Guha S and Erkmen B I 2009 Phys. Rev. A 80 052310 [6] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337 [7] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773 [8] Niu X L, Huang Y F, Xiang G Y, Guo G C and Ou Z 2008 Opt. Lett. 33 968 [9] Roelofs M, Suna A, Bindloss W and Bierlein J 1994 J. Appl. Phys. 76 4999 [10] Yung M H, Meng F, Zhang X M and Zhao M J 2020 npj Quantum Information 6 75 [11] Banaszek K, U'Ren A B and Walmsley I A 2001 Opt. Lett. 26 1367 [12] U'Ren A, Silberhorn C, Banaszek K, Walmsley I, Erdmann R, Grice W and Raymer M 2005 Laser Physics 15 146 [13] Bennink R S 2010 Phys. Rev. A 81 053805 [14] Wong F, Shapiro J and Kim T 2006 Laser Physics 16 1517 [15] Louisell W, Yariv A and Siegman A 1961 Phys. Rev. 124 1646 [16] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84 [17] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044 [18] Evans P G, Bennink R S, Grice W P, Humble T S and Schaake J 2010 Phys. Rev. Lett. 105 253601 [19] Howell J C, Bennink R S, Bentley S J and Boyd R W 2004 Phys. Rev. Lett. 92 210403 [20] Dada A C, Leach J, Buller G S, Padgett M J and Andersson E 2011 Nat. Phys. 7 677 [21] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [22] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709 [23] O'brien J L 2007 Science 318 1567 [24] Kitaev A Y, Shen A, Vyalyi M N and Vyalyi M N, 2002 Classical and quantum computation (American Mathematical Soc.) [25] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [26] Buluta I and Nori F 2009 Science 326 108 [27] Yung M H, Whitfield J D, Boixo S, Tempel D G and Aspuru-Guzik A 2014 Quantum Information and Computation for Chemistry pp. 67-106 [28] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [29] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [30] Cheung J, Chunnilall C, Woolliams E, Fox N, Mountford J, Wang J and Thomas P 2007 J. Mod. Opt. 54 373 [31] Chang C S, Vadiraj A, Bourassa J, Balaji B and Wilson C 2019 Appl. Phys. Lett. 114 112601 [32] Jonsson R, Di Candia R, Ankel M, Ström A and Johansson G 2020 IEEE Radar Conference (RadarConf20). 2020, pp. 1-6 [33] Peshko I, Mogilevtsev D, Karuseichyk I, Mikhalychev A, Nizovtsev A, Slepyan G Y and Boag A 2019 Opt. Express 27 29217 [34] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417 [35] Jacobson J, Björk G, Chuang I and Yamamoto Y 1995 Phys. Rev. Lett. 74 4835 [36] Shapiro J H 2007 Proceedings of SPIE 6603 Noise and Fluctuations in Photonics, Quantum Optics, and Communications, June 7, 2007, Florence, Italy, p. 660306 [37] Brandt H E 1999 Am. J. Phys. 67 434 [38] Lloyd S 2008 Science 321 1463 [39] Wilde M M, Tomamichel M, Lloyd S and Berta M 2017 Phys. Rev. Lett. 119 120501 [40] Zhuang Q, Zhang Z and Shapiro J H 2017 JOSA B 34 1567 [41] Lopaeva E, Berchera I R, Degiovanni I P, Olivares S, Brida G and Genovese M 2013 Phys. Rev. Lett. 110 153603 [42] De Palma G and Borregaard J 2018 Phys. Rev. A 98 012101 [43] Harrow A W, Hassidim A, Leung D W and Watrous J 2010 Phys. Rev. A 81 032339 [44] Bae J, Chruściński D and Piani M 2019 Phys. Rev. Lett. 122 140404 [45] Piani M and Watrous J 2009 Phys. Rev. Lett. 102 250501 [46] Sacchi M F 2005 Phys. Rev. A 72 014305 [47] Sacchi M F 2005 Phys. Rev. A 71 062340 [48] Clarke R B, Chefles A, Barnett S M and Riis E 2001 Phys. Rev. A 63 040305 [49] Zhuang Q, Zhang Z and Shapiro J H 2017 Phys. Rev. Lett. 118 040801 [50] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 [51] Lax M 1966 Phys. Rev. 145 110 [52] Yan B, Giorgetti A and Paolini E 2021 Signal Processing 189 108257 [53] Yan B, Paolini E, Xu N, Sun Z and Xu L 2021 Signal Processing 179 107821 [54] Yan B, Paolini E, Xu L and Lu H M 2022 IEEE Transactions on Geoscience and Remote Sensing [55] Pittman T B, Shih Y, Strekalov D and Sergienko A V 1995 Phys. Rev. A 52 R3429 [56] Wong F N C, Shapiro J H and Kim T 2006 Laser Physics 16 1517 [57] Brida G, Degiovanni I P, Genovese M, Rastello M L and Ruo-Berchera I 2010 Opt. Express 18 20572 [58] Helstrom C W 1969 J. Stat. Phys. 1 231 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|