Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078403    DOI: 10.1088/1674-1056/ac5982
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding

Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳)
Institute of Lightwave Technology, Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
Abstract  A switchable down-, up- and dual-chirped microwave waveform generation technique with improved time-bandwidth product (TBWP) is proposed and demonstrated based on a dual-polarization dual-parallel Mach-Zehnder modulator (DP-DPMZM) cascaded with a polarization modulator (PolM). By properly controlling the phase shifts of the radio frequency signals applied to the DP-DPMZM, switchable down-, up- and dual-chirped waveforms with simultaneous frequency and bandwidth doubling can be generated. To enlarge the TBWP further, splitting parabolic signal and phase-encoding splitting parabolic signal are used to drive the PolM for the enhancement of bandwidth and time duration. Numerical results demonstrate the generation of down-, up- and dual-chirped microwave waveform with TBWP of 8, 160 and 10240. The proposed method may find applications in future multifunction radar systems due to the high performance and flexibility.
Keywords:  microwave photonics      linearly chirped waveform generation      time-bandwidth product  
Received:  20 October 2021      Revised:  01 January 2022      Accepted manuscript online:  02 March 2022
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
  42.79.-e (Optical elements, devices, and systems)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2006217, 61775015, and 62101027) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2021JBZ103 and 2021YJS002).
Corresponding Authors:  Muguang Wang     E-mail:  mgwang@bjtu.edu.cn

Cite this article: 

Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳) Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding 2022 Chin. Phys. B 31 078403

[1] Pan S and Zhang Y 2020 J. Lightwave Technol. 38 5450
[2] Rihaczek A W 1996 Principles of High-Resolution Radar (Norwood, MA:Artech House)
[3] Capmany J and Novak D 2007 Nat. Photon. 1 319
[4] Weiner A M 2011 Opt. Commun. 284 3669
[5] McKinney J D, Leaird D E and Weiner A M 2002 Opt. Lett. 27 1345
[6] Wang C and Yao J 2009 J. Lightwave Technol. 27 3336
[7] Dong J, Luo B, Yu Y and Zhang X 2012 Chin. Phys. B 21 068401
[8] Xu Y, Shi Z, Chi H, Jin X, Zheng S and Zhang X 2014 Opt. Commun. 331 278
[9] Tseng C H, Hung Y H and Hwang S K 2019 Opt. Lett. 44 3334
[10] Zhou P, Zhang F, Guo Q and Pan S 2016 Opt. Express 24 18460
[11] Hao T, Cen Q, Dai Y, Tang J, Li W, Yao J, Zhu N and Li M 2018 Nat. Commun. 9 1839
[12] Li M, Wang C, Li W and Yao J 2010 IEEE Trans. Microw. Theory Tech. 58 2968
[13] Li M, Yao J 2011 IEEE Trans. Microw. Theory Tech. 59 3531
[14] Shi J W, Kuo F M, Chen N W, Set S Y, Huang C B and Bowers J E 2012 IEEE Photonics J. 4 215
[15] Zhang K, Zhao S H, Wen A J, Zhang W, Zhai W L, Lin T and Li X 2019 Opt. Lett. 44 4004
[16] Zhu S, Li M, Zhu N H and Li W 2019 Opt. Lett. 44 923
[17] Zhu D and Yao J 2015 IEEE Photonics Technol. Lett. 27 1410
[18] Zhang K, Zhao S, Li X, Zhu Z, Jiang W, Lin T and Wang G 2019 Opt. Commun. 437 17
[19] Yang J and Ma J 2020 Opt. Commun. 475 126220
[20] Zhang K, Zhao S, Lin T, Li X, Jiang W and Wang G 2019 Results Phys. 13 102226
[21] Xu Y, Jin T, Chi H, Zheng S, Jin X and Zhang X 2017 IEEE Photonics Technol. Lett. 29 1253
[22] Li X, Zhao S, Zhu Z, Qu K, Lin T and Hu D 2017 IEEE Photonics J. 9 7104014
[23] Zhang K, Zhao S, Li Y, Li X, Lin T, Jiang W, Wang G and Li H 2020 Opt. Commun. 474 126076
[24] Luo X, Yu L, Wang A, Wo J, Zhang J and Wang Y 2020 Opt. Commun. 475 126291
[25] Zhou P, Chen H, Zhang N R and Pan S 2020 Opt. Lett. 45 1342
[26] Chen H, Zhou P, Zhang L, Bassi S, Nakarmi B and Pan S 2020 J. Lightwave Technol. 38 5500
[27] Li P, Yan L, Ye J, Zou X, Luo B and Pan W 2020 Opt. Lett. 45 1990
[28] Zhang Y, Ye X, Guo Q, Zhang F and Pan S 2017 J. Lightwave Technol. 35 1821
[29] Li Y, Dezfooliyan A and Weiner A M 2014 J. Lightwave Technol. 32 3580
[1] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[2] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[3] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
[4] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(7): 073201.
[5] Diversity of photonic differentiators based on flexible demodulation of phase signals
Zheng Ao-Ling (郑傲凌), Dong Jian-Ji (董建绩), Lei Lei (雷蕾), Yang Ting (杨婷), Zhang Xin-Liang (张新亮). Chin. Phys. B, 2014, 23(3): 033201.
No Suggested Reading articles found!