Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨)1, Wang Zhang(张望)1, Hui-Qiong Wang(王惠琼)1,2, and Jin-Cheng Zheng(郑金成)1,2,†
1 Department of Physics, Xiamen University, Xiamen 361005, China; 2 Department of Physics, Xiamen University Malaysia, 439000 Sepang, Selangor, Malaysia
Abstract Thermal rectification is an exotic thermal transport phenomenon, an analog to electrical rectification, in which heat flux along one direction is larger than that in the other direction and is of significant interest in electronic device applications. However, achieving high thermal rectification efficiency or rectification ratio is still a scientific challenge. In this work, we performed a systematic simulation of thermal rectification by considering both efforts of thermal conductivity asymmetry and geometrical asymmetry in a multi-segment thermal rectifier. It is found that the high asymmetry of thermal conductivity and the asymmetry of the geometric structure of multi-segment thermal rectifiers can significantly enhance the thermal rectification, and the combination of both thermal conductivity asymmetry and geometrical asymmetry can further improve thermal rectification efficiency. This work suggests a possible way for improving thermal rectification devices by asymmetry engineering.
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274355) and Xiamen University Malaysia Research Fund (Grant Nos. XMUMRF/2022-C9/IORI/003 and XMUMRF/2022-C10/IORI/004).
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成) Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier 2023 Chin. Phys. B 32 064402
[1] Kobayashi W, Teraoka Y and Terasaki I2009 Appl. Phys. Lett.95 171905 [2] Marucha C, Mucha J and Rafałowicz J1975 Phys. Status Solidi A31 269 [3] Marucha C, Mucha J and Rafałowicz J1976 Phys. Status Solidi A37 K5 [4] Garcia-Garcia K and Alvarez-Quintana J2014 Int. J. Therm. Sci.81 76 [5] Hoff H1985 Physica A131 449 [6] Sun X, Kotake S, Suzuki Y and Senoo M2001 Heat Transfer Asian Res.30 164 [7] Hu B, He D, Yang L and Zhang Y2006 Phys. Rev. E74 060201 [8] Dames C2009 J. Heat Transfer131 061301 [9] Majumdar A and Reddy P2004 Appl. Phys. Lett.84 4768 [10] Starr C1936 Physics7 15 [11] Moon J S and Keeler R N1962 Int. J. Heat Mass Transfer5 967 [12] Thomas T and Probert S1970 Int. J. Heat Mass Transfer13 789 [13] O'callaghan P, Probert S and Jones A1970 J. Phys. D3 1352 [14] Chumak K and Martynyak R2012 Int. J. Heat Mass Transfer55 5603 [15] Xu W, Zhang G and Li B2014 J. Appl. Phys.116 134303 [16] Roberts N and Walker D G2011 J. Heat Transfer133 092401 [17] Somers R, Fletcher L and Flack R1987 AIAA J.25 620 [18] Barber J and Wright K1967 Int. J. Mech. Sci.9 811 [19] Rogers G1961 Int. J. Heat Mass Transfer2 150 [20] Powell R, Tye R and Jolliffe B1962 Int. J. Heat Mass Transfer5 897 [21] Clausing A1966 Int. J. Heat Mass Transfer9 791 [22] Lewis D and Perkins H1968 Int. J. Heat Mass Transfer11 1371 [23] Hudson P1976 Phys. Status Solidi A37 93 [24] Huang J, Li Q, Zheng Z and Xuan Y2013 Int. J. Heat Mass Transfer67 575 [25] Lee J, Varshney V, Roy A K, Ferguson J B and Farmer B L2012 Nano Lett.12 3491 [26] Wang L and Li B2007 Phys. Rev. Lett.99 177208 [27] Chang C W, Okawa D, Majumdar A and Zettl A2006 Science314 1121 [28] Otey C R, Lau W T and Fan S2010 Phys. Rev. Lett.104 154301 [29] Casati G2005 Chaos15 015120 [30] Li B, Wang L and Casati G2004 Phys. Rev. Lett.93 184301 [31] Hu B and Yang L2005 Chaos15 015119 [32] Hu B, Yang L and Zhang Y2006 Phys. Rev. Lett.97 124302 [33] Peyrard M2006 Europhys. Lett.76 49 [34] Hopkins P E and Norris P M2009 J. Heat Transfer131 022402 [35] Terraneo M, Peyrard M and Casati G2002 Phys. Rev. Lett.88 094302 [36] Yang N, Li N, Wang L and Li B2007 Phys. Rev. B76 020301 [37] Toyin O R, Ge W X and Gao L2021 Chin. Phys. Lett.38 016801 [38] Hu S Q, An M, Yang N and Li B W2017 Small13 1602726 [39] Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C2017 Appl. Phys. Rev.4 041304 [40] Roberts N A and Walker D G2011 Int. J. Therm. Sci.50 648 [41] Prstic S, Iyengar M, Arik M, Gektin V, Hodes M, Narasimhan S and Geisler K 2010 Panel Session at ITherm2010 [42] Swoboda T, Klinar K, Yalamarthy A S, Kitanovski A and Muñoz Rojo M 2021 Acta Phys. Sin.70 200625 (in Chinese) [43] Zhang L M, Jiao B B, Yun S C, Kong Y M, Ku C W and Chen D P2017 Chin. Phys. Lett.34 025101 [44] Chi F and Sun L L2016 Chin. Phys. Lett.33 117201 [45] Jin Q X, Liu B, Liu Y, Wang W W, Wang H, Xu Z, Gao D, Wang Q, Xia Y Y, Song Z T and Feng S L2016 Chin. Phys. Lett.33 98502 [46] Li H L and Cao B Y2019 Acta Phys. Sin.68 200201 (in Chinese) [47] Klinar K, Swoboda T, Muñoz Rojo M and Kitanovski A 2021 Acta Phys. Sin.70 200623 (in Chinese) [48] Dietrich M, Euler A and Thummes G2017 Cryogenics83 31 [49] Klinar K and Kitanovski A2020 Renew. Sust. Energ. Rev.118 109571 [50] Qian S, Yu J and Yan G2017 Renew. Sust. Energ. Rev.69 535 [51] Miño-Galaz G A2015 J. Phys. Chem. B119 6179 [52] Craven G T, He D and Nitzan A2018 Phys. Rev. Lett.121 247704 [53] Sandonas L M, Gutierrez R, Dianat A and Cuniberti G2015 RSC Adv.5 54345 [54] Chun W, Ko Y, Lee H, Han H, Kim J and Chen K2009 Sol. Energy83 409 [55] Hemaida A, Ghosh A, Sundaram S and Mallick T K2020 Sol. Energy195 185 [56] Cui H and Overend M2019 Energy Build.199 427 [57] Han C, Chen Z and Li B2021 Int. J. Heat Mass Transfer179 121675 [58] Li B, Wang L and Casati G2006 Appl. Phys. Lett.88 143501 [59] Wang L and Li B2008 Phys. Rev. Lett.101 267203 [60] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T2012 Sci. Rep.2 523 [61] Zheng J C2022 Research2022 9867639 [62] Xie C2012 Phys. Teach.50 237 [63] Klie R F, Zheng J C, Zhu Y, Varela M, Wu J and Leighton C2007 Phys. Rev. Lett.99 047203 [64] Zeng N and Wang J S2008 Phys. Rev. B78 024305 [65] Fan Z Y, Zheng J S, Wang H Q and Zheng J C2012 Nanoscale Res. Lett.7 570 [66] Wang Z Q, Cheng H, Lu T Y, Wang H Q, Feng Y P and Zheng J C2018 Phys. Chem. Chem. Phys.20 16510 [67] Wang Y K, Zhang M K, Dai Y, Wang H Q, Zhang H Y, Wang Q Q, Hou W B, Yan H, Li W R and Zheng J C2019 J. Power Sources438 227045 [68] Yan H, Wang J H, Fang Y, Zhou M X, Guo X Y, Wang H Q, Dai Y, Li W R and Zheng J C2019 Electrochim. Acta304 138 [69] Dai Y, Ma L P, Hu J Q, Wang J H, Yan H, Zhang H Y, Wang H Q, Lai C Y, Li W R and Zheng J C2021 Electrochim. Acta371 137792 [70] Sa N, Chong S S, Wang H Q and Zheng J C2022 Nanomaterials12 3239 [71] Li X J, Li N, Ren F, Wang K H, Koh C L, Wu M, Wang H Q and Zheng J C2018 J. Mater. Sci.53 13955 [72] Ding X and Ming Y2014 Chin. Phys. Lett.31 046601 [73] Wang J, Pereira E and Casati G2012 Phys. Rev. E86 010101 [74] Wei N, Xu L Q, Wang H Q and Zheng J C2011 Nanotechnology22 105705 [75] Zhang Z Q, Qian S, Wang R J and Zhu Z F2019 Acta Phys. Sin.68 054401 (in Chinese) [76] Zhang P P, Tan S H, Peng X F and Long M Q2020 Chin. Phys. B29 106801 [77] Wang Q L, Chen Y Y, Aiyiti A, Zheng M R, Li N B and Xu X F2020 Chin. Phys. B29 084402 [78] Pan D K, Zong Z C and Yang N2022 Acta Phys. Sin.71 086302 (in Chinese) [79] Wei N, Chen Y, Cai K, Zhang Y Y, Pei Q X, Zheng J C, Mai Y W and Zhao J H2022 Green Energy Environ.7 86 [80] Wei N, Chen Y, Cai K, Zhao J, Wang H Q and Zheng J C2016 Carbon104 203 [81] Xu L Q, Wei N, Zheng Y P, Fan Z Y, Wang H Q and Zheng J C2012 J. Mater. Chem.22 1435 [82] Li C Y, Lin S M, Dai H Y and Lu D L2018 Acta Phys. Sin.67 214401 (in Chinese) [83] Yang S S, Hou Y and Zhu L L2019 Chin. Phys. B28 086501 [84] Zhang Y Y, Cheng R, Ni D, Tian M, Lu J W and Zhao Y2019 Chin. Phys. B28 078105 [85] Xing H, Wang H Q, Song T, Li C, Dai Y, Fu G, Kang J and Zheng J C2023 Chin. Phys. B32 064210 [86] Zhang L, Li N, Wang H Q, Zhang Y F, Ren F, Liao X X, Li Y P, Wang X D, Huang Z, Dai Y, Yan H and Zheng J C2017 Chin. Phys. B26 016602 [87] Zheng J C, Zhang L, Kretinin A V, Morozov S V, Wang Y B, Wang T, Li X J, Ren F, Zhang J Y, Lu C Y, Chen J C, Lu M, Wang H Q, Geim A K and Novoselov K S2016 2D Mater.3 011004 [88] Zheng J and Wang H2021 Sci. Sin-Phys. Mech. Astron51 030007 [89] Wang H Q, Xu J Y, Lin X Y, Li Y P, Kang J Y and Zheng J C2021 Light Sci. Appl.10 153 [90] Zhou H, Wu L J, Wang H Q, Zheng J C, Zhang L H, Kisslinger K, Li Y P, Wang Z Q, Cheng H, Ke S M, Li Y, Kang J Y and Zhu Y M2017 Nat. Commun.8 1474 [91] Chen Y, Zhang Y Y, Cai K, Jiang J W, Zheng J C, Zhao J H and Wei N2017 Carbon117 399
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.