Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064402    DOI: 10.1088/1674-1056/acc78c
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier

Fu-Ye Du(杜甫烨)1, Wang Zhang(张望)1, Hui-Qiong Wang(王惠琼)1,2, and Jin-Cheng Zheng(郑金成)1,2,†
1 Department of Physics, Xiamen University, Xiamen 361005, China;
2 Department of Physics, Xiamen University Malaysia, 439000 Sepang, Selangor, Malaysia
Abstract  Thermal rectification is an exotic thermal transport phenomenon, an analog to electrical rectification, in which heat flux along one direction is larger than that in the other direction and is of significant interest in electronic device applications. However, achieving high thermal rectification efficiency or rectification ratio is still a scientific challenge. In this work, we performed a systematic simulation of thermal rectification by considering both efforts of thermal conductivity asymmetry and geometrical asymmetry in a multi-segment thermal rectifier. It is found that the high asymmetry of thermal conductivity and the asymmetry of the geometric structure of multi-segment thermal rectifiers can significantly enhance the thermal rectification, and the combination of both thermal conductivity asymmetry and geometrical asymmetry can further improve thermal rectification efficiency. This work suggests a possible way for improving thermal rectification devices by asymmetry engineering.
Keywords:  thermal conductivity      simulation      thermal rectification      multi-segment thermal rectifier  
Received:  13 December 2022      Revised:  17 February 2023      Accepted manuscript online:  25 March 2023
PACS:  44.10.+i (Heat conduction)  
  66.30.Xj (Thermal diffusivity)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274355) and Xiamen University Malaysia Research Fund (Grant Nos. XMUMRF/2022-C9/IORI/003 and XMUMRF/2022-C10/IORI/004).
Corresponding Authors:  Jin-Cheng Zheng     E-mail:  jczheng@xmu.edu.cn

Cite this article: 

Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成) Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier 2023 Chin. Phys. B 32 064402

[1] Kobayashi W, Teraoka Y and Terasaki I2009 Appl. Phys. Lett. 95 171905
[2] Marucha C, Mucha J and Rafałowicz J1975 Phys. Status Solidi A 31 269
[3] Marucha C, Mucha J and Rafałowicz J1976 Phys. Status Solidi A 37 K5
[4] Garcia-Garcia K and Alvarez-Quintana J2014 Int. J. Therm. Sci. 81 76
[5] Hoff H1985 Physica A 131 449
[6] Sun X, Kotake S, Suzuki Y and Senoo M2001 Heat Transfer Asian Res. 30 164
[7] Hu B, He D, Yang L and Zhang Y2006 Phys. Rev. E 74 060201
[8] Dames C2009 J. Heat Transfer 131 061301
[9] Majumdar A and Reddy P2004 Appl. Phys. Lett. 84 4768
[10] Starr C1936 Physics 7 15
[11] Moon J S and Keeler R N1962 Int. J. Heat Mass Transfer 5 967
[12] Thomas T and Probert S1970 Int. J. Heat Mass Transfer 13 789
[13] O'callaghan P, Probert S and Jones A1970 J. Phys. D 3 1352
[14] Chumak K and Martynyak R2012 Int. J. Heat Mass Transfer 55 5603
[15] Xu W, Zhang G and Li B2014 J. Appl. Phys. 116 134303
[16] Roberts N and Walker D G2011 J. Heat Transfer 133 092401
[17] Somers R, Fletcher L and Flack R1987 AIAA J. 25 620
[18] Barber J and Wright K1967 Int. J. Mech. Sci. 9 811
[19] Rogers G1961 Int. J. Heat Mass Transfer 2 150
[20] Powell R, Tye R and Jolliffe B1962 Int. J. Heat Mass Transfer 5 897
[21] Clausing A1966 Int. J. Heat Mass Transfer 9 791
[22] Lewis D and Perkins H1968 Int. J. Heat Mass Transfer 11 1371
[23] Hudson P1976 Phys. Status Solidi A 37 93
[24] Huang J, Li Q, Zheng Z and Xuan Y2013 Int. J. Heat Mass Transfer 67 575
[25] Lee J, Varshney V, Roy A K, Ferguson J B and Farmer B L2012 Nano Lett. 12 3491
[26] Wang L and Li B2007 Phys. Rev. Lett. 99 177208
[27] Chang C W, Okawa D, Majumdar A and Zettl A2006 Science 314 1121
[28] Otey C R, Lau W T and Fan S2010 Phys. Rev. Lett. 104 154301
[29] Casati G2005 Chaos 15 015120
[30] Li B, Wang L and Casati G2004 Phys. Rev. Lett. 93 184301
[31] Hu B and Yang L2005 Chaos 15 015119
[32] Hu B, Yang L and Zhang Y2006 Phys. Rev. Lett. 97 124302
[33] Peyrard M2006 Europhys. Lett. 76 49
[34] Hopkins P E and Norris P M2009 J. Heat Transfer 131 022402
[35] Terraneo M, Peyrard M and Casati G2002 Phys. Rev. Lett. 88 094302
[36] Yang N, Li N, Wang L and Li B2007 Phys. Rev. B 76 020301
[37] Toyin O R, Ge W X and Gao L2021 Chin. Phys. Lett. 38 016801
[38] Hu S Q, An M, Yang N and Li B W2017 Small 13 1602726
[39] Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C2017 Appl. Phys. Rev. 4 041304
[40] Roberts N A and Walker D G2011 Int. J. Therm. Sci. 50 648
[41] Prstic S, Iyengar M, Arik M, Gektin V, Hodes M, Narasimhan S and Geisler K 2010 Panel Session at ITherm2010
[42] Swoboda T, Klinar K, Yalamarthy A S, Kitanovski A and Muñoz Rojo M 2021 Acta Phys. Sin. 70 200625 (in Chinese)
[43] Zhang L M, Jiao B B, Yun S C, Kong Y M, Ku C W and Chen D P2017 Chin. Phys. Lett. 34 025101
[44] Chi F and Sun L L2016 Chin. Phys. Lett. 33 117201
[45] Jin Q X, Liu B, Liu Y, Wang W W, Wang H, Xu Z, Gao D, Wang Q, Xia Y Y, Song Z T and Feng S L2016 Chin. Phys. Lett. 33 98502
[46] Li H L and Cao B Y2019 Acta Phys. Sin. 68 200201 (in Chinese)
[47] Klinar K, Swoboda T, Muñoz Rojo M and Kitanovski A 2021 Acta Phys. Sin. 70 200623 (in Chinese)
[48] Dietrich M, Euler A and Thummes G2017 Cryogenics 83 31
[49] Klinar K and Kitanovski A2020 Renew. Sust. Energ. Rev. 118 109571
[50] Qian S, Yu J and Yan G2017 Renew. Sust. Energ. Rev. 69 535
[51] Miño-Galaz G A2015 J. Phys. Chem. B 119 6179
[52] Craven G T, He D and Nitzan A2018 Phys. Rev. Lett. 121 247704
[53] Sandonas L M, Gutierrez R, Dianat A and Cuniberti G2015 RSC Adv. 5 54345
[54] Chun W, Ko Y, Lee H, Han H, Kim J and Chen K2009 Sol. Energy 83 409
[55] Hemaida A, Ghosh A, Sundaram S and Mallick T K2020 Sol. Energy 195 185
[56] Cui H and Overend M2019 Energy Build. 199 427
[57] Han C, Chen Z and Li B2021 Int. J. Heat Mass Transfer 179 121675
[58] Li B, Wang L and Casati G2006 Appl. Phys. Lett. 88 143501
[59] Wang L and Li B2008 Phys. Rev. Lett. 101 267203
[60] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T2012 Sci. Rep. 2 523
[61] Zheng J C2022 Research 2022 9867639
[62] Xie C2012 Phys. Teach. 50 237
[63] Klie R F, Zheng J C, Zhu Y, Varela M, Wu J and Leighton C2007 Phys. Rev. Lett. 99 047203
[64] Zeng N and Wang J S2008 Phys. Rev. B 78 024305
[65] Fan Z Y, Zheng J S, Wang H Q and Zheng J C2012 Nanoscale Res. Lett. 7 570
[66] Wang Z Q, Cheng H, Lu T Y, Wang H Q, Feng Y P and Zheng J C2018 Phys. Chem. Chem. Phys. 20 16510
[67] Wang Y K, Zhang M K, Dai Y, Wang H Q, Zhang H Y, Wang Q Q, Hou W B, Yan H, Li W R and Zheng J C2019 J. Power Sources 438 227045
[68] Yan H, Wang J H, Fang Y, Zhou M X, Guo X Y, Wang H Q, Dai Y, Li W R and Zheng J C2019 Electrochim. Acta 304 138
[69] Dai Y, Ma L P, Hu J Q, Wang J H, Yan H, Zhang H Y, Wang H Q, Lai C Y, Li W R and Zheng J C2021 Electrochim. Acta 371 137792
[70] Sa N, Chong S S, Wang H Q and Zheng J C2022 Nanomaterials 12 3239
[71] Li X J, Li N, Ren F, Wang K H, Koh C L, Wu M, Wang H Q and Zheng J C2018 J. Mater. Sci. 53 13955
[72] Ding X and Ming Y2014 Chin. Phys. Lett. 31 046601
[73] Wang J, Pereira E and Casati G2012 Phys. Rev. E 86 010101
[74] Wei N, Xu L Q, Wang H Q and Zheng J C2011 Nanotechnology 22 105705
[75] Zhang Z Q, Qian S, Wang R J and Zhu Z F2019 Acta Phys. Sin. 68 054401 (in Chinese)
[76] Zhang P P, Tan S H, Peng X F and Long M Q2020 Chin. Phys. B 29 106801
[77] Wang Q L, Chen Y Y, Aiyiti A, Zheng M R, Li N B and Xu X F2020 Chin. Phys. B 29 084402
[78] Pan D K, Zong Z C and Yang N2022 Acta Phys. Sin. 71 086302 (in Chinese)
[79] Wei N, Chen Y, Cai K, Zhang Y Y, Pei Q X, Zheng J C, Mai Y W and Zhao J H2022 Green Energy Environ. 7 86
[80] Wei N, Chen Y, Cai K, Zhao J, Wang H Q and Zheng J C2016 Carbon 104 203
[81] Xu L Q, Wei N, Zheng Y P, Fan Z Y, Wang H Q and Zheng J C2012 J. Mater. Chem. 22 1435
[82] Li C Y, Lin S M, Dai H Y and Lu D L2018 Acta Phys. Sin. 67 214401 (in Chinese)
[83] Yang S S, Hou Y and Zhu L L2019 Chin. Phys. B 28 086501
[84] Zhang Y Y, Cheng R, Ni D, Tian M, Lu J W and Zhao Y2019 Chin. Phys. B 28 078105
[85] Xing H, Wang H Q, Song T, Li C, Dai Y, Fu G, Kang J and Zheng J C2023 Chin. Phys. B 32 064210
[86] Zhang L, Li N, Wang H Q, Zhang Y F, Ren F, Liao X X, Li Y P, Wang X D, Huang Z, Dai Y, Yan H and Zheng J C2017 Chin. Phys. B 26 016602
[87] Zheng J C, Zhang L, Kretinin A V, Morozov S V, Wang Y B, Wang T, Li X J, Ren F, Zhang J Y, Lu C Y, Chen J C, Lu M, Wang H Q, Geim A K and Novoselov K S2016 2D Mater. 3 011004
[88] Zheng J and Wang H2021 Sci. Sin-Phys. Mech. Astron 51 030007
[89] Wang H Q, Xu J Y, Lin X Y, Li Y P, Kang J Y and Zheng J C2021 Light Sci. Appl. 10 153
[90] Zhou H, Wu L J, Wang H Q, Zheng J C, Zhang L H, Kisslinger K, Li Y P, Wang Z Q, Cheng H, Ke S M, Li Y, Kang J Y and Zhu Y M2017 Nat. Commun. 8 1474
[91] Chen Y, Zhang Y Y, Cai K, Jiang J W, Zheng J C, Zhao J H and Wei N2017 Carbon 117 399
[1] Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas
Hui Li(李慧), Ji-Quan Li(李继全), Feng Wang(王丰), Qi-Bin Luan(栾其斌),Hong-En Sun(孙宏恩), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(7): 075206.
[2] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[3] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[4] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[5] Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs
Rongxing Cao(曹荣幸), Kejia Wang(汪柯佳), Yang Meng(孟洋), Linhuan Li(李林欢), Lin Zhao(赵琳), Dan Han(韩丹), Yang Liu(刘洋), Shu Zheng(郑澍), Hongxia Li(李红霞), Yuqi Jiang(蒋煜琪), Xianghua Zeng(曾祥华), and Yuxiong Xue(薛玉雄). Chin. Phys. B, 2023, 32(6): 068502.
[6] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[7] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[8] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[9] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[10] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[11] Theoretical study of the enhancement of saturable absorption of Kr under x-ray free-electron laser
Jiaxin Ye(叶佳鑫), Yixuan Yang(杨怡璇), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(5): 053202.
[12] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[13] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[14] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[15] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
No Suggested Reading articles found!