Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064401    DOI: 10.1088/1674-1056/ac9223
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite

Chengye Li(李承业)1, Changying Zhao(赵长颖)1,2, and Xiaokun Gu(顾骁坤)2,†
1 China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China;
2 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We propose an optimized scheme to determine the smearing parameter in the Gaussian function that is used to replace the Dirac δ function in the first Brillouin zone sampling. The broadening width is derived by analyzing the difference of the results from the phase-space method and Gaussian broadening method. As a demonstration, using the present approach, we investigate the phonon transport in a typical layered material, graphite. Our scheme is benchmarked by comparing with other zone sampling methods. Both the three-phonon phonon scattering rates and thermal conductivity are consistent with the prediction from the widely used tetrahedron method and adaptive broadening method. The computational efficiency of our scheme is more than one order of magnitude higher than the two other methods. Furthermore, the effect of four-phonon scattering in phonon transport in graphite is also investigated. It is found that four-phonon scattering reduces the through-plane thermal conductivity by 10%. Our methods could be a reference for the prediction of thermal conductivity of anisotropic material in the future.
Keywords:  graphite      thermal conductivity      phonon transport      Boltzmann transport equation  
Received:  30 April 2022      Revised:  09 September 2022      Accepted manuscript online:  15 September 2022
PACS:  44.10.+i (Heat conduction)  
  63.20.kg (Phonon-phonon interactions)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  81.05.uf (Graphite)  
Fund: X. G. acknowledges the support from the National Natural Science Foundation of China (Grant No. 51706134).
Corresponding Authors:  Xiaokun Gu     E-mail:  xiaokun.gu@sjtu.edu.cn

Cite this article: 

Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤) An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite 2023 Chin. Phys. B 32 064401

[1] Esfarjani K, Garg J and Chen G2014 Annu. Rev. Heat Transf. 17 9
[2] Lindsay L2016 Nanoscale Microscale Thermophys. Eng. 20 67
[3] Gu X, Fan Z and Bao H2021 J. Appl. Phys. 130 210902
[4] Bao H, Chen J, Gu X and Cao B2018 ES Energy Environ. 1 16
[5] Maradudin A A and Fein A E1962 Phys. Rev. 128 2589
[6] Tadano T, Gohda Y and Tsuneyuki S2014 J. Phys. Condens. Matter 26 225402
[7] Chernatynskiy A and Phillpot S R2015 Comput. Phys. Commun. 192 196
[8] Broido D A, Ward A and Mingo N2005 Phys. Rev. B 72 014308
[9] Gu X, Fan Z, Bao H and Zhao C Y2019 Phys. Rev. B 100 064306
[10] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A2012 Phys. Rev. B 85 195436
[11] Garg J, Bonini N, Kozinsky B and Marzari N2011 Phys. Rev. Lett. 106 045901
[12] Esfarjani K, Chen G and Stokes H T2011 Phys. Rev. B 84 085204
[13] Fugallo G, Lazzeri M, Paulatto L and Mauri F2013 Phys. Rev. B 88 045430
[14] Blöchl P E, Jepsen O and Andersen O K1994 Phys. Rev. B 49 16223
[15] Li W, Carrete J, Katcho N A and Mingo N2014 Comput. Phys. Commun. 185 1747
[16] Lindsay L, Li W, Carrete J, Mingo N, Broido D A, and Reinecke T L2014 Phys. Rev. B 89 155426
[17] Fei T, Bai S, Xi C, K. R N, Yinchuan L, Ke C, Sean S, Jaehyun K, Yuanyuan Z, Te-Huan L, Miguel G, Zhiwei D, Jingying S, Gamage U G G A, Haoran S, Hamidreza Z, Shuyuan H, Liangzi D, Jianshi Z, J. S A, Shuo C, Ching-Wu C, Y. H P, David B, Li S, Gang C and Zhifeng R2018 Science 361 582
[18] Sheng L, Qiye Z, Yinchuan L, Xiaoyuan L, Xiqu W, Y. H P, G. C D and Bing L2018 Science 361 579
[19] Sang K J, Man L, Huan W, Huuduy N and Yongjie H2018 Science 361 575
[20] Gu X, Li S and Bao H2020 Int. J. Heat Mass Transf. 160 120165
[21] Feng T and Ruan X2018 Phys. Rev. B 97 045202
[22] Feng T, Lindsay L and Ruan X2017 Phys. Rev. B 96 161201(R)
[23] Feng T and Ruan X2016 Phys. Rev. B 93 045202
[24] Liu H, Qian X, Bao H, Zhao C and Gu X2021 J. Phys. Condens. Matter 33 405401
[25] Zhang B, Fan Z, Zhao C Y and Gu X 2021 J. Phys. Condens Matter 33 495901
[26] Kelly B T1967 Philos. Mag. 15 1005
[27] Hooker C N, Ubbelohde A R J P and Young D A1965 Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 284 17
[28] Wei Z, Yang F, Bi K, Yang J and Chen Y 2019 Carbon 144 109
[29] Zhang H, Chen X, Jho Y D and Minnich A J2016 Nano Lett. 16 1643
[30] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N and Mauri F2014 Nano Lett. 14 6109
[31] Paulatto L, Mauri F and Lazzeri M 2013 Phys. Rev. B 87 214303
[32] Fu Q, Yang J, Chen Y, Li D and Xu D2015 Appl. Phys. Lett. 106 031905
[33] Sun Z, Yuan K, Chang Z, Zhang X, Qin G and Tang D2019 J. Appl. Phys. 126 125104
[34] Strongman P, Askarpour V and Maassen J 2021 Phys. Rev. B 104 035428
[35] Yates J R, Wang X, Vanderbilt D and Souza I 2007 Phys. Rev. B 75 195121
[36] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M2009 J. Phys. Condens Matter 21 395502
[37] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C2010 Phys. Rev. B 82 081101(R)
[38] Sabatini R, Küçükbenli E, Pham C H and De Gironcoli S2016 Phys. Rev. B 93 235120
[39] Wirtz L and Rubio A2004 Solid State Commun. 131 141
[40] Nicklow R, Wakabayashi N and Smith H G1972 Phys. Rev. B 5 4951
[41] Mohr M, Maultzsch J, Dobardžić E, Reich S, Milošević I, Damnjanović M, Bosak A, Krisch M and Thomsen C 2007 Phys. Rev. B 76 035439
[42] Maultzsch J, Reich S, Thomsen C, Requardt H and Ordejón P2004 Phys. Rev. Lett. 92 075501
[43] Ho C Y, Powell R W and Liley P E1972 J. Phys. Chem. Ref. Data 1 279
[44] Mingo N and Broido D A2005 Nano Lett. 5 1221
[1] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[2] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[3] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[4] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[5] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[6] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[7] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[8] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[9] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[10] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[13] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!