|
|
A robust method for performance evaluation of the vapor cell for magnetometry |
Zhi Liu(柳治)1,2, Sheng Zou(邹升)1,2, Kaifeng Yin(尹凯峰)1,2, Tao Shi(石韬)1,2, Junjian Tang(唐钧剑)1,2, and Heng Yuan(袁珩)1,2,† |
1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China; 2 Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China |
|
|
Abstract A robust performance evaluation method for vapor cells used in magnetometers is proposed in this work. The performance of the vapor cell determines the sensitivity of the magnetic measurement, which is the core parameter of a magnetometer. After establishing the relationship between intrinsic sensitivity and the total relaxation rate, the total relaxation rate of the vapor cell can be obtained to represent the intrinsic sensitivity of the magnetometer by fitting the parameters of the magnetic resonance experiments. The method for measurement of the total relaxation rate based on the magnetic resonance experiment proposed in this work is robust and insensitive to ambient noise. Experiments show that, compared with conventional sensitivity measurement, the total relaxation rate affected by magnetic noise below 0.9 nT, pump light frequency noise below 1.5 GHz, pump light power noise below 9%, probe light power noise below 3% and temperature fluctuation of 150 ±3 ℃ deviates by less than 2% from the noise-free situation. This robust performance evaluation method for vapor cells is conducive to the construction of a multi-channel high-spatial-resolution cardio-encephalography system.
|
Received: 06 September 2022
Revised: 14 November 2022
Accepted manuscript online: 29 November 2022
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
07.55.-w
|
(Magnetic instruments and components)
|
|
33.35.+r
|
(Electron resonance and relaxation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62173020 and 62103381). |
Corresponding Authors:
Heng Yuan
E-mail: hengyuan@buaa.edu.cn
|
Cite this article:
Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩) A robust method for performance evaluation of the vapor cell for magnetometry 2023 Chin. Phys. B 32 040703
|
[1] Fan L M, Zheng Q, Kang X Y, Zhang X J and Kang C 2018 Chin. Phys. B 27 060703 [2] Chen D, Zhao B Q and Zhang X 2015 Chin. Phys. Lett. 32 128502 [3] Zhang S L and Cao N 2020 Chin. Phys. B 29 040702 [4] Li J J, Du P C, Fu J Q, Wang X T, Zhou Q and Wang R Q 2019 Chin. Phys. B 28 040703 [5] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596 [6] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110 [7] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Munoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657 [8] Chi H T, Quan W, Zhang J Y, Zhao L J and Fang J C 2020 Appl. Surf. Sci. 501 143897 [9] Wang X L, Ye M, Lu F, Mao Y K, Tian H and Li J L 2022 Biosensors 12 165 [10] Kitching J 2018 Appl. Phys. Rev. 5 031302 [11] Ji Y, Shang J T, Li G L, Zhang J and Zhang J F 2020 IEEE Sens. Lett. 4 2500104 [12] Liu Z, Zou S, Yin K F, Zhou B Q, Ning X L and Yuan H 2022 J. Phys. D: Appl. Phys. 55 285003 [13] Patton B, Ishikawa K, Jau Y Y and Happer W 2007 Phys. Rev. Lett. 99 027601 [14] Perry A R, Sheng D, Krzyzewski S P, Geller S and Knappe S 2017 Proc. SPIE 10119, Slow Light, Fast Light, and Opto-Atomic Precision Metrology X, 101190V [15] Wang Y X, Jin G, Tang J J, Zhou W Y, Han B C, Zhou B Q and Shi T 2022 Opt. Express 30 336 [16] Wang Y X, Shi T, Zhou W Y, Tang J J, Zhou B Q, Jin G, Han B C and Zou S 2022 Opt. Express 30 23587 [17] Sun Z Y, Fierlinger P, Han J C, Li L Y, Liu T H, Schnabel A, Stuiber S and Voigt J 2021 IEEE Trans. Ind. Electron. 68 5385 [18] Xing B Z, Lu J X, Sun C, Yu T T, Wu Y, Gao Y N and Han B C 2022 Opt. Express 30 3854 [19] Jia Y C, Liu Z C, Chai Z, Liang X Y and Wu W F 2021 IEEE Trans. Instrum. Meas. 70 7005409 [20] Yan Y G, Liu G, Lin H X, Yin K F, Wang K and Lu J X 2021 Chin. Opt. Lett. 19 121407 [21] Zhao T, Liu Y, Wei K, Xie H T, Mu T J, Fang X J, Xu Z T and Zhai Y Y 2022 J. Phys. D: Appl. Phys. 55 165103 [22] Liu F, Wu J Q and Quan W 2022 Rev. Sci. Instrum. 93 015102 [23] Lu F, Lu J X, Li B, Yan Y G, Zhang S W, Yin K F, Ye M and Han B C 2022 IEEE Trans. Instrum. Meas. 71 1501210 [24] Zou S, Zhang H, Chen X Y and Fang J C 2022 Measurement 187 110338 [25] Kamada K, Ito Y, Ichihara S, Mizutani N and Kobayashi T 2015 Opt. Express 23 6976 [26] Lu J X, Qian Z, Fang J C and Quan W 2015 Rev. Sci. Instrum. 86 083103 [27] Fang J C and Qin J 2012 Rev. Sci. Instrum. 83 103104 [28] Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602 [29] Tang J J, Liu Y, Wang Y X, Zhou B Q, Han B C, Zhai Y Y and Liu G 2022 Appl. Phys. Lett. 120 084001 [30] Liu X J, Ding M, Li Y, Hu Y H, Jin W and Fang J C 2018 Chin. Phys. B 27 073201 [31] Savukov I M and Romalis M V 2005 Phys. Rev. A 71 023405 [32] Lu J X, Qian Z and Fang J C 2015 Rev. Sci. Instrum. 86 043104 [33] Romalis M V, Miron E and Cates G D 1997 Phys. Rev. A 56 4569 [34] Rotondaro M D and Perram G P 1997 J. Quant. Spectrosc. Radiat. Transfer 57 497 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|