Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046201    DOI: 10.1088/1674-1056/ac9cba
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories

Soheil Oveissi1, Aazam Ghassemi1,†, Mehdi Salehi1, S. Ali Eftekhari2, and Saeed Ziaei-Rad3
1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
2 Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran;
3 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
Abstract  We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Flügge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates, a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain, we discuss the effects of nanoflow velocity, fluid density (nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases.
Keywords:  buckling      nonlocal cylindrical shell model      anofluid-nanostructure interaction      carbon nanotubes  
Received:  23 June 2022      Revised:  28 September 2022      Accepted manuscript online:  21 October 2022
PACS:  62.20.mq (Buckling)  
  21.60.Cs (Shell model)  
  61.46.-w (Structure of nanoscale materials)  
  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
Corresponding Authors:  Aazam Ghassemi     E-mail:  aazam77@yahoo.com,a_ghassemi@pmc.iau.ac.ir

Cite this article: 

Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S. Ali Eftekhari, and Saeed Ziaei-Rad Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories 2023 Chin. Phys. B 32 046201

[1] Craighead H G 2000 Science 290 1532
[2] Kolahdoozan M, Kiani A, Heidari P and Oveissi S 2019 Appl. Surf. Sci. 481 531
[3] Kolahdoozan M, Saedi H, Sina N and Oveissi S 2019 J. Adhes. Sci. Tech. 33 355
[4] Oveissi S, Ghassemi A, Salehi M, Eftekhari S A and Ziaei-Rad S 2022 Thin-Walled Struct. 173 108926
[5] Ai D, Qiao H, Zhang S, Luo L M, Sun C Y, Zhang S, Peng C Q, Qi Q C, Jin T Y, Zhou M and Xu X Y 2020 Chin. Phys. B 29 090601
[6] Georgantzinos S K and Anifantis N K 2010 Physica E 42 1795
[7] Joshi A Y, Harsha S P and Sharma S C 2010 Physica E 42 2115
[8] Babu S, Ndungu P, Bradley J C, Rossi M P and Gogotsi Y 2005 Microfluid Nanofluid 1 284
[9] Song X, Li B and Xie L 2020 Chin. Phys. B 29 086201
[10] Wang X Y and Wang X 2004 Compos. Part B-Eng. 35 79
[11] Zhou Y N and Huang G Y 2014 Chin. Phys. Lett. 31 116202
[12] Oveissi S, Eftekhari S A and Toghraie D 2016 Physica E 83 164
[13] Oveissi S and Ghassemi A 2018 Appl. Math. Model. 60 460
[14] Iijima S 1991 Nature 354 56
[15] Wang W, Deguchi Y, He Y S and Zhang J Z 2019 Acta Phys. Sin. 68 234303 (in Chinese)
[16] Oveissi S, Toghraie D, Eftekhari S A and Chamkha A J 2019 Int. J. Numer. Methods Heat Fluid Flow 30 1773
[17] Oveissi S, Toghraie D S and Eftekhari S A 2017 Int. J. Fluid Mech. Res. 44 115
[18] Oveissi S, Toghraie D S and Eftekhari S A 2018 Int. J. Fluid Mech. Res. 45 171
[19] Zhang Y Y, Wang C M, Duan W H, Xiang Y and Zong Z 2009 Nanotechnology 20 395707
[20] Silvestre N, Wang C M, Zhang Y Y and Xiang Y 2011 Composite Struct. 93 1683
[21] Love A E H 2013 A treatise on the mathematical theory of elasticity (New York: Cambridge University Press) p. 553
[22] Flügge W 2013 Stresses in shells (Berlin: Springer) p. 407
[23] Donnell L H 1933 Stability of thin-walled tubes under torsion (USA: University of North Texas Libraries) pp. 7-29
[24] Sanders J J L 1963 Quart. Appl. Math. 21 21
[25] Salahshour S and Fallah F 2018 Thin-Walled Struct. 124 81
[26] Arash B and Wang Q 2012 Comput. Mater. Sci. 51 303
[27] Wang Q and Varadan V K 2007 Smart Mater. Struct. 16 178
[28] Jaunky N and Knight Jr N F 1999 Int. J. Solids Struct. 36 3799
[29] Stein M 1986 AIAA J. 24 1537
[30] Paidoussis M P 1998 Fluid-structure interactions: slender structures and axial flow (California: Academic Press) p. 196
[31] Drazin P G and Riley N 2006 The Navier-Stokes equations: A classification of flows and exact solutions (New York: Cambridge University Press) p. 11
[32] Rashidi V, Mirdamadi H R and Shirani E 2012 Comput. Mater. Sci. 51 347
[33] Pollard W G and Present R D 1948 Phys. Rev. 73 762
[34] Kamidakis G, Beskok A and Aluru N 2005 Microflows and nanoflows: Fundamentals and simulation (New York: Science-Business Media) p. 51
[35] Ansari R and Rouhi H 2015 Int. J. Nano Dimension 6 453 (in Persian)
[36] Loy C T and Lam K Y 1997 Int. J. Mech. Sci. 39 455
[37] Pellicano F and Amabili M 2003 Int. J. Solids Struct. 40 3229
[38] Hu Y G, Liew K M, Wang Q, He X Q and Yakobson B I 2008 J. Mech. Phys. Solids 56 3475
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[5] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[6] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[7] Growth induced buckling of morphoelastic rod in viscous medium
Yitong Zhang(张一桐), Shuai Zhang(张帅), Peng Wang(王鹏). Chin. Phys. B, 2020, 29(5): 054501.
[8] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[9] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[10] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[11] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[12] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[13] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[14] Structural transitions of SWNT filled with C60 under high pressure
Yong-gang Zou(邹永刚), Li Xu(徐莉), Kun Tian(田锟), He Zhang(张贺), Xiao-hui Ma(马晓辉), Ming-guang Yao(姚明光). Chin. Phys. B, 2016, 25(5): 056101.
[15] Flexible impedance and capacitive tensile load Sensor based on CNT composite
Zubair Ahmad, Kh S Karimov, Farid Touati. Chin. Phys. B, 2016, 25(2): 028801.
No Suggested Reading articles found!