Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028801    DOI: 10.1088/1674-1056/25/2/028801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Flexible impedance and capacitive tensile load Sensor based on CNT composite

Zubair Ahmad1, Kh S Karimov2,3, Farid Touati1
1. Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
2. Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, District Swabi, KPK, 23640, Pakistan;
3. Center for Innovative Development of Science and New Technologies, Academy of Sciences, Aini St., 299/2, Dushanbe, 734063, Tajikistan
Abstract  In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube (CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N-1 and 1.8 N-1, respectively. Experimental results are compared with the simulated values, and they show that they are in reasonable agreement with each other.
Keywords:  carbon nanotubes      flexible      tensile load      impedance      capacitive  
Received:  24 August 2015      Revised:  20 September 2015      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  42.70.Jk (Polymers and organics)  
  47.80.Fg (Pressure and temperature measurements)  
Corresponding Authors:  Zubair Ahmad     E-mail:  zubairtarar@qu.edu.qa

Cite this article: 

Zubair Ahmad, Kh S Karimov, Farid Touati Flexible impedance and capacitive tensile load Sensor based on CNT composite 2016 Chin. Phys. B 25 028801

[1] Cantalini C, Valentini L, Armentano I, Lozzi L, Kenny J and Santucci S 2003 Sensors Actuators B: Chem. 95 195
[2] Na P S, Kim H, So H M, Kong K J, Chang H, Ryu B H, Choi Y, Lee J O, Kim B K and Kim J J 2005 Appl. Phys. Lett. 87 093101
[3] Rinkiö M, Zavodchikova M Y, Törmä P and Johansson A 2008 Physica Status Solidi (b) 245 2315
[4] Saleem M, Karimov K S, Karieva Z and Mateen A http://dx.doi.org/10.1016/j.physe.2010.06.0112010 Physica E: Low-dimensional Systems and Nanostructures 43 28
[5] Tang D, Ci L, Zhou W and Xie S 2006 Carbon 44 2155
[6] Varghese O, Kichambre P, Gong D, Ong K, Dickey E and Grimes C 2001 Sensors and Actuators B: Chemical 81 32
[7] Billinghurst M and Starner T 1999 Computer 32 57
[8] Paradiso R, Gemignani A, Scilingo E and De Rossi D 2003 Knitted bioclothes for cardiopulmonary monitoring (IEEE, 3720)
[9] Park S and Jayaraman S 2003 IEEE Engineering in Medicine and Biology Magazine 22 41
[10] Rossi D D, Lorussi F, Mazzoldi A, Orsini P and Scilingo E P 2003 Active Dressware: Wearable Kinesthetic Systems. in Sensors and sensing in biology and engineering, eds. Friedrich G Barth, Joseph A C Humphrey and Timothy W Secomb (Wien, New York: Springer-Verlag)
[11] Service R F 2003 Science 301 909
[12] Sibinski M, Jakubowska M and Sloma M 2010 Sensors 10 7934
[13] Karimov K S, Khalid F A, Tariq Saeed Chani M, Mateen A, Asif Hussain M and Maqbool A 2012 OAM-RC 6 194
[14] Karimov K S and Abid M 2011 Organic Semiconductor Electromechanical Sensors. Pressure, Displacement and Strain Sensors, (VDM Verlag Dr. Muller GmbH & Co. KG Dudweiler Landstr, 99, 66123 Saarbrucken, Deutschland)
[15] Hu N, Fukunaga H, Atobe S, Liu Y and Li J 2011 Sensors 11 10691
[16] Shang S, Zeng W and Tao X M 2011 Journal of Materials Chemistry 21 7274
[17] Brabec C J 2003 Organic photovoltaics: concepts and realization (Berlin: Springer)
[18] Böttger H and Bryksin V V 1985 Hopping conduction in solids (Weinheim: VCH)
[19] Yavorsky B and Detlaf A 1980 Handbook of physics (Mir)
[20] Taylor T, Hansen P, Acikel B, Pervez N, York R, Streiffer S and Speck J 2002 Appl. Phys. Lett. 80 1978
[21] Riley W F, McConnell K G, Dally J W, Dally J W and Dally J W 1993 Instrumentation for engineering measurements (Wiley)
[22] Croft A, Davison R and Hargreaves M 1992 Engineering Mathematics: A Modern Foundation for Electrical, Electronic, and Control Engineers (Addison-Wesley Longman Publishing Co., Inc.)
[23] Riley W F, McConnell, K G and Dally J W 1993 Instrumentation for engineering measurements (John Wiley & Sons, Inc)
[24] Yasuoka T, Shimamura Y and Todoroki A 2013 International Journal of Aeronautical and Space Sciences 14 146
[25] Manandhar P, Calvert P D and Buck J R 2012 IEEE Sensors Journal 12 2052
[26] Tjahyono A P, Aw K C and Travas-Sejdic J 2012 Sensors and Actuators B: Chemical 166 426
[27] Pang C, Lee G Y, Kim Ti, Kim S M, Kim H N, Ahn S H and Suh K Y 2012 Nat. Mater. 11 795
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[5] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[6] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[7] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[10] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[11] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[12] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[13] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[14] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[15] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
No Suggested Reading articles found!