Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044205    DOI: 10.1088/1674-1056/ac946c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Light manipulation by dual channel storage in ultra-cold Rydberg medium

Xue-Dong Tian(田雪冬)1, Zi-Jiao Jing(景梓骄)1, Feng-Zhen Lv(吕凤珍)1, Qian-Qian Bao(鲍倩倩)2,†, and Yi-Mou Liu(刘一谋)3,‡
1 College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 College of Physics, Liaoning University, Shenyang 110036, China;
3 Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
Abstract  We investigate the light propagation dynamics in ultra-cold Rydberg medium with inverted-Y configuration based on the superatom theory. It is viable to store light information in two types of atomic spin coherence (trivial spin coherence and Rydberg spin coherence), which makes the system a prospective platform for versatile light manipulation. A normal feature is to realize efficient light storage with simultaneous resonant control fields applied. An intriguing feature is to split light into two beams with different intensities and statistical properties if the control fields are applied separately. The beam of light retrieved from the Rydberg spin coherence is severely attenuated and shows anti-bunching character accompanied by the cooperative optical nonlinearity. Moreover, generation and manipulation of beating signal are achievable by applying the non-resonant control fields.
Keywords:  Rydberg atom      electromagnetically induced transparency      light storage      dark-state polariton  
Received:  12 July 2022      Revised:  19 September 2022      Accepted manuscript online:  23 September 2022
PACS:  42.50.-p (Quantum optics)  
  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104107), the Natural Science Foundation of Guangxi Province, China (Grant No. AD19245180), the Natural Science Foundation of Jilin Province, China (Grant No. 20220101009JC), and the "Yucai Project" of Guangxi Normal University.
Corresponding Authors:  Qian-Qian Bao, Yi-Mou Liu     E-mail:  baoqianqian@lnu.edu.cn;liuym605@nenu.edu.cn

Cite this article: 

Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋) Light manipulation by dual channel storage in ultra-cold Rydberg medium 2023 Chin. Phys. B 32 044205

[1] Lukin M D 2003 Rev. Mod. Phys. 75 457
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[4] Ma L J, Slattery O and Tang X 2017 J. Opt. 19 043001
[5] Schraft D, Hain M, Lorenz N and Halfmann T 2016 Phys. Rev. Lett. 116 073602
[6] Iakoupov I, Borregaard J and Sørensen A S 2018 Phys. Rev. Lett. 120 010502
[7] Wang H, Li S J, Xu Z X, Zhao X B, Zhang L J, Li J H, Wu Y L, Xie C D, Peng K C and Xiao M 2011 Phys. Rev. A 83 043815.
[8] Bao Q Q, Gao J W, Cui C L, Wang G, Xue Y and Wu J H 2011 Opt. Express 12 11832
[9] Bajcsy M, Zibrov A S and Lukin M D 2003 Nature 426 638
[10] Bao Q Q, Zhang X H, Gao J Y, Zhang Y, Cui C L and Wu J H 2011 Phys. Rev. A 84 063812
[11] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
[12] Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305
[13] Zhang Z Y, Ding D S and Shi B S 2021 Chin. Phys. B 30 020307
[14] Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T and Lukin M D 2011 Phys. Rev. Lett. 107 133602
[15] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601
[16] Tebben A, Hainaut C, Walther V, Zhang Y C, Zürn G, Pohl T and Weidemüller M 2019 Phys. Rev. A 100 063812
[17] Müller M M, Murphy M, Montangero S, Calarco T, Grangier P and Browaeys A 2014 Phys. Rev. A 89 032334
[18] Wu H Z, Huang X R, Hu C S, Yang Z B and Zheng S B 2017 Phys. Rev. A 96 022321
[19] Li M, Guo F Q, Jin Z, Yan L L, Liang E J and Su S L 2021 Phys. Rev. A 103 062607
[20] Xing T H, Zhao P Z and Tong D M 2021 Phys. Rev. A 104 012618
[21] Rao D D B and Molmer K 2013 Phys. Rev. Lett. 111 033606
[22] Tian X D, Liu Y M, Cui C L and Wu J H 2015 Phys. Rev. A 92 063411
[23] Hu C S, Lin X Y, Shen L T, Su W J, Jiang Y K, Wu Hu Z and Zheng S B 2020 Opt. Express 28 1492
[24] Li R, Yu D M, Su S L and Qian J 2020 Phys. Rev. A 101 042328
[25] Yang C, Li D X and Shao X Q 2021 Chin. Phys. B 30 023201
[26] Firstenberg O, Peyronel T, Liang Q Y, Gorshkov A V, Lukin M D and Vuletić V 2013 Nature 502 71
[27] Maghrebi M F, Gullans M J, Bienias P, Choi S, Martin I, Firstenberg O, Lukin M D, Büchler H P and Gorshkov A V 2015 Phys. Rev. Lett. 115 123601
[28] Khazali M, Heshami K and Simon C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 215301
[29] Baur S, Tiarks D, Rempe G and Dürr S 2014 Phys. Rev. Lett. 112 073901
[30] Li W and Lesanovsky I 2015 Phys. Rev. A 92 043828
[31] Stiesdal N, Busche H, Kleinbeck K, Kumlin J, Hansen M G, Büchler H P and Hofferberth S 2021Nat. Commun. 12 4328
[32] Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Phys. Rev. Lett. 110 103001
[33] Ripka F, Chen Y H, Löw R and Pfau T 2016 Phys. Rev. A 93 053429
[34] Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D and de Riedmatten H 2016 Phys. Rev. Lett. 117 113001
[35] Li L and Kuzmich A 2016 Nat. Commun. 7 13618
[36] Distante E, Farrera P, Padrón-Brito A, Paredes-Barato D, Heinze Ge and de Riedmatten H 2017 Nat. Commun. 8 14072
[37] Mirgorodskiy I, Christaller F, Braun C, Paris-Mandoki A, Tresp C and Hofferberth S 2017 Phys. Rev. A 96 011402
[38] Padrón-Brito A, Tricarico R, Farrera P, Distante E, Theophilo K, Chang D and de Riedmatten H 2021 New J. Phys. 23 063009
[39] Gullans M J, Thompson J D, Wang Y, Liang Q Y, Vuletić V, Lukin M D and Gorshkov A V 2016 Phys. Rev. Lett. 117 113601
[40] Yang L, He B, Wu J H, Zhang Z Y and Xiao M 2016 Optica 3 1095
[41] Zeuthen E, Gullans M J, Maghrebi M F and Gorshkov A V 2017 Phys. Rev. Lett. 119 043602
[42] Tian X D, Liu Y M, Bao Q Q, Wu J H, Artoni M and La Rocca G C 2018 Phys. Rev. A 97 043811
[43] Yang F, Liu Y C and You L 2019 Phys. Rev. A 99 063803
[44] Zhang H X, Wu J H, Artoni M and La Rocca G C 2022 Front. Phys. 17 22502
[45] Yan D, Liu Y M, Bao Q Q, Fu C B and Wu J H 2012 Phys. Rev. A 86 023828
[46] Yan D, Cui C L, Liu Y M, Song L J and Wu J H 2013 Phys. Rev. A 87 023827
[47] Gorshkov A V, André A, Lukin M D and Sørensen A S 2007 Phys. Rev. A 76 033805
[1] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[4] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[5] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[6] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[9] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[12] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[13] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[14] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[15] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
No Suggested Reading articles found!