Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044204    DOI: 10.1088/1674-1056/ac981e

A probability theory for filtered ghost imaging

Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩)
Key Laboratory of Optoelectronic Devices and Detection Technology, College of Physics, Liaoning University, Shenyang 110036, China
Abstract  Based on probability density functions, we present a theoretical model to explain filtered ghost imaging (FGI) we first proposed and experimentally demonstrated in 2017 [Opt. Lett. 42 5290 (2017)]. An analytic expression for the joint intensity probability density functions of filtered random speckle fields is derived according to their probability distributions. Moreover, the normalized second-order intensity correlation functions are calculated for the three cases of low-pass, bandpass and high-pass filterings to study the resolution and visibility in the FGI system. Numerical simulations show that the resolution and visibility predicted by our model agree well with the experimental results, which also explains why FGI can achieve a super-resolution image and better visibility than traditional ghost imaging.
Keywords:  filtered ghost imaging      probability density function      super-resolution  
Received:  27 June 2022      Revised:  28 September 2022      Accepted manuscript online:  07 October 2022
PACS:  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
  87.57.-s (Medical imaging) (Computed radiography)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302), and the Project of Innovation and Entrepreneurship Training Program for college students of Liaoning University (Grant No. S202110140003).
Corresponding Authors:  Xi-Hao Chen     E-mail:

Cite this article: 

Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩) A probability theory for filtered ghost imaging 2023 Chin. Phys. B 32 044204

[1] Pittman T, Shih Y H, Strekalov D and Sergienko A 1995 Phys. Rev. A 52 R3429
[2] Cheng J and Han S 2004 Phys. Rev. Lett. 92 093903
[3] Gatti A, Brambilla A E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[4] Cai J Y and Zhu S Y 2005 Phys. Rev. E 71 056607
[5] Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A 71 013801
[6] Valencia A, Scarcelli G, D'Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601
[7] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[8] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett. 34 695
[9] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J and Wu L A 2014 Opt. Lett. 39 2314
[10] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica 1 285
[11] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[12] He Y H, Zhang A X, Yu W K, Chen L M and Wu L A 2020 Chin. Phys. Lett. 37 044208
[13] He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A and Chen L M 2020 APL Photon. 5 056102
[14] Jeltes T, McNamara J M, Hogervorst W, Vassen W, Krachmalnicoff V, Schellekens M, Perrin A, Chang H, Boiron D, Aspect A and Westbrook C I 2007 Nature 445 402
[15] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P and Ratner D 2018 Phys. Rev. Lett. 121 114801
[16] He Y H, Huang Y Y, Zeng Z R, Li Y F, Tan J H, Chen L M, Wu L A, Li M F, Quan B G, Wang S L and Liang T J 2021 Sci. Bull. 66 133
[17] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[18] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[19] Shapiro J H 2008 Phys. Rev. A 78 061802
[20] Zhao C Q, Gong W L, Chen M L, Li, E R, Wang H, Xu D W and Han S S 2012 Appl. Phys. Lett. 101 141123
[21] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[22] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[23] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[24] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 5290
[25] Meng S Y, Sha Y H, Fu Q, Bao Q Q, Shi W W, Li G D, Chen X H and Wu L A 2018 Opt. Lett. 43 4759
[26] Meng S Y, Shi W W, Tao J J, Fu Q, Bao Q Q, Sha Y H, Chen X H and Wu L A 2020 Chin. Phys. B 29 128704
[27] Meng S Y, Chen M Y, Ji J, Shi W W, Fu Q, Bao Q Q, Chen X H and Wu L A 2022 Chin. Phys. B 31 028702
[28] Lyu M, Wang W, Wang H, Wang H C, Li G W, Chen N and Situ G H 2017 Sci. Rep. 7 17865
[29] He Y C, Wang G, Dong, G X, Zhu S T, Chen H, Zhang A X and Xu Z 2018 Sci. Rep. 8 6469
[30] Horisaki R, Takagi R and Tanida J 2016 Opt. Express 24 13738
[31] Yang H, Wu S, Wang H B, Cao D Z, Zhang S H, Xiong J and Wang K G 2018 Phys. Rew. A 98 053853
[32] Cao D Z, Li Q C, Zhuang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[33] Leng J, Yu W K and Wang S F 2020 Phys. Rew. A 101 033835
[34] Hu C Y, Zhu R G, Yu H and Han S S 2021 Phys. Rew. A 103 043717
[35] Goodman J W 2020 Speckle Phenomena in Optics: Theory and Applications, 2nd edn. (Roberts & Company Publishers) pp. 68-78
[36] Goodman J W 2015 Statistical Optics, 2nd edn. (John Wiley & Sons, New York)
[37] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[38] Wang Y L, Wang F R, Liu R F, Chen D R, Gao H, Zhang P and Li F L 2015 Opt. Lett. 40 5323
[39] Chen Z, Shi J, Li Y, Li Q and Zeng G 2014 Eur. Phys. J. Appl. Phys. 67 10501
[40] Sun S, Liu W T, Gu J H, Lin H Z and Chen P X 2019 Opt. Lett. 44 5993
[1] Improving resolution of superlens based on solid immersion mechanism
Zhanlei Hao (郝占磊), Yangyang Zhou (周杨阳), Bei Wu (吴贝), Yineng Liu (刘益能) and Huanyang Chen (陈焕阳). Chin. Phys. B, 2023, 32(6): 064211.
[2] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[3] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[4] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[5] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[6] Sub-Rayleigh imaging via undersampling scanning based on sparsity constraints
Chang-Bin Xue(薛长斌), Xu-Ri Yao(姚旭日), Long-Zhen Li(李龙珍), Xue-Feng Liu(刘雪峰), Wen-Kai Yu(俞文凯), Xiao-Yong Guo(郭晓勇), Guang-Jie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2017, 26(2): 024203.
[7] STED microscopy based on axially symmetric polarized vortex beams
Zhehai Zhou(周哲海), Lianqing Zhu(祝连庆). Chin. Phys. B, 2016, 25(3): 030701.
[8] Nonequilibrium work equalities in isolated quantum systems
Liu Fei (柳飞), Ouyang Zhong-Can (欧阳钟灿). Chin. Phys. B, 2014, 23(7): 070512.
[9] Steady-state probability density function in wave turbulence under large volume limit
Yeontaek Choi, Sang Gyu Jo. Chin. Phys. B, 2011, 20(5): 050501.
[10] Below-diffraction-limited hybrid recording using silicon thin film super-resolution structure
Jiao Xin-Bing(焦新兵), Wei Jing-Song(魏劲松), and Gan Fu-Xi(干福熹). Chin. Phys. B, 2009, 18(12): 5370-5374.
[11] A shaped annular beam tri-heterodyne confocal microscope with good anti-environmental interference capability
Zhao Wei-Qian(赵维谦), Feng Zheng-De(冯政德), and Qiu Li-Rong(邱丽荣). Chin. Phys. B, 2007, 16(6): 1624-1631.
[12] Read-out of a read-only super-resolution optical disc with a Si mask
Wei Jin-Song (魏劲松), Ruan Hao (阮昊), Shi Hong-Ren (施宏仁), Gan Fu-Xi (干福熹). Chin. Phys. B, 2002, 11(10): 1073-1075.
No Suggested Reading articles found!