Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047103    DOI: 10.1088/1674-1056/acb913
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition

Shien Li(李世恩)1,2, Zefeng Lin(林泽丰)2,3, Wei Hu(胡卫)2, Dayu Yan(闫大禹)2, Fucong Chen(陈赋聪)2,3, Xinbo Bai(柏欣博)2,3, Beiyi Zhu(朱北沂)2, Jie Yuan(袁洁)2,4, Youguo Shi(石友国)2,3,4, Kui Jin(金魁)2,3,4, Hongming Weng(翁红明)2,3,4, and Haizhong Guo(郭海中)1,†
1 Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  TaAs, the first experimentally discovered Weyl semimetal material, has attracted a lot of attention due to its high carrier mobility, high anisotropy, nonmagnetic properties and strong interaction with light. These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation, thermoelectric devices, and photodetection. For further basic physics studies and potential applications, large-size and high-quality TaAs films are urgently needed. However, it is difficult to grow As-stoichiometry TaAs films due to the volatilization of As during the growth. To solve this problem, we attempted to grow TaAs films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition (PLD). In this work, we found that partial As ions of the GaAs substrate are likely to diffuse into the TaAs films during growth, which was preliminarily confirmed by structural characterization, surface topography and composition analysis. As a result, the As content in the TaAs film was improved and the TaAs phase was achieved. Our work presents an effective method for the fabrication of TaAs films using PLD, enabling possible use of the Weyl semimetal film for functional devices.
Keywords:  Weyl semimetal      TaAs film      pulsed laser deposition  
Received:  09 December 2022      Revised:  20 January 2023      Accepted manuscript online:  06 February 2023
PACS:  71.55.Ak (Metals, semimetals, and alloys)  
  68.55.-a (Thin film structure and morphology)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0718700), the National Natural Science Foundation of China (Grant No. 12174347), the Synergetic Extreme Condition User Facility (SECUF), and the Center for Materials Genome.
Corresponding Authors:  Haizhong Guo     E-mail:  hguo@zzu.edu.cn

Cite this article: 

Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中) Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition 2023 Chin. Phys. B 32 047103

[1] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[2] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[3] Bernevig B A 2015 Nat. Phys. 11 698
[4] Weng H, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227
[5] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[6] Huang S, Xu S, Belopolski I, Lee C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M 2015 Nat. Commun. 6 7373
[7] Xu S, Belopolski I, Alidoust N, et al. 2015 Science 349 613
[8] Lv B, Weng H, Fu B, Wang X, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[9] Xu S, Belopolski I, Sanchez D, et al. 2016 Phys. Rev. Lett. 116 096801
[10] Lv B, Muff S, Qian T, Song Z, Nie S, Xu N, Richard P, Matt C, Plumb N, Zhao L, Chen G, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H and Ding H 2015 Phys. Rev. Lett. 115 217601
[11] Yang L, Liu Z, Sun Y, Peng H, Yang H, Zhang T, Zhou B, Zhang Y, Guo Y, Rahn M, Prabhakaran D, Hussain Z, Mo S, Felser C, Yan B and Chen Y 2015 Nat. Phys. 11 879
[12] Liu Z, Yang L, Sun Y, Zhang T, Peng H, Yang H, Chen C, Zhang Y, Guo Y, Prabhakaran D, Schmidt M, Hussain Z, Mo S, Felser C, Yan B and Chen Y 2016 Nat. Mater. 15 27
[13] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[14] Lv B, Xu N, Weng H, Ma J, Richard P, Huang X, Zhao L, Chen G, Matt C, Bisti F, Strocov V, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[15] Zhang C, Yuan Z, Jiang Q, Tong B, Zhang C, Xie X C and Jia S 2017 Phys. Rev. B 95 085202
[16] Osterhoudt G B, Diebel L K, Gray M J, Yang X, Stanco J, Huang X, Shen B, Ni N, Moll P J W, Ran Y and Burch K S 2019 Nat. Mater. 18 471
[17] Chi S, Li Z, Xie Y, Zhao Y, Wang Z, Li L, Yu H, Wang G, Weng H, Zhang H and Wang J 2018 Adv. Mater. 30 1801372
[18] Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y, Zhang W, Su Y, Chen X, Weng H, Kharzeev D E, Liu M and Qi J 2020 Nat. Commun. 11 720
[19] Peng B, Zhang H, Shao H, Lu H, Zhang D W and Zhu H 2016 Nano Energy 30 225
[20] Sankar R, Peramaiyan G, Muthuselvam I P, Xu S, Hasan M Z and Chou F C 2018 J. Phys.: Condens. Matter 30 015803
[21] Li Z, Chen H, Jin S, Gan D, Wang W, Guo L and Chen X 2016 Cryst. Growth Des. 16 1172
[22] Yanez W, Ou Y, Xiao R, Ghosh S, Dwivedi J, Steinebronn E, Richardella A, Mkhoyan K A and Samarth N 2022 Phys. Rev. Appl. 18 054004
[23] Sadowski J, Domagał a J Z, Zajkowska W, Kret S, Seredyński B, Gryglas-Borysiewicz M, Ogorzał ek Z, Bożek R and Pacuski W 2022 Cryst. Growth Des. 22 6039
[24] Sun K, Sun S, Wei L, Guo C, Tian H, Chen G, Yang H and Li J 2017 Chin. Phys. Lett. 34 117203
[25] Sirica N, Tobey R I, Zhao L, Chen G, Xu B, Yang R, Shen B, Yarotski D A, Bowlan P, Trugman S A, Zhu J, Dai Y, Azad A K, Ni N, Qiu X, Taylor A J and Prasankumar R P 2019 Phys. Rev. Lett. 122 197401
[26] Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y and Wang X 2020 Chin. Phys. Lett. 37 017104
[27] Gao M, Zhang M, Niu W, Chen Y, Gu M, Wang H, Song F, Wang P, Yan S, Wang F, Wang X, Wang X, Xu Y and Zhang R 2017 Appl. Phys. Lett 111 031906
[28] Han Q and Schmid-Fetzer R 1993 Mater. Sci. Eng. B 17 147
[29] Willerström J O 1984 J. Less-common Met. 99 273
[30] Furuseth S, Selte K and Kjekshus A 1965 Acta Chem. Scand. 19 95
[31] Murray J J, Taylor J B, Calvert L D, Wang Y, Gabe E J, Despault J G 1976 J. Less-common Met. 46 311
[32] Zhang C, Xu S, Belopolski I, et al. 2016 Nat. Commun. 7 10735
[33] Han Q and Schmid-Fetzer R 1994 Mater. Sci. Eng. B 22 147
[34] Campos C E M and Pizani P S 2002 Appl. Surf. Sci. 200 111
[35] Zhang S and Northrup J E 1991 Phys. Rev. Lett. 67 2339
[36] Biegelsen D K, Bringans R D, Northrup J E and Swartz L 1990 Phys. Rev. B 41 5701
[37] Chen C, Chang L, Chang E, Chen S and Chang D 2000 Appl. Phys. Lett. 77 3367
[38] Lahav A and Eizenberg M 1984 Appl. Phys. Lett. 45 256
[1] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[2] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[3] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[4] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[5] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[6] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[7] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[8] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[9] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[10] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[11] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[12] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[13] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[14] Crystal structure and electromagnetic responses of tetragonal GdAlGe
Cong Wang(王聪), Yong-Quan Guo(郭永权), Tai Wang(王泰), and Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2020, 29(12): 127502.
[15] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
No Suggested Reading articles found!