INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films |
Li-Cai Hao(郝礼才)1, Zi-Ang Chen(陈子昂)2,3, Dong-Yang Liu(刘东阳)2,3, Wei-Kang Zhao(赵伟康)2,3, Ming Zhang(张鸣)2,3, Kun Tang(汤琨)2,3,†, Shun-Ming Zhu(朱顺明)2,3, Jian-Dong Ye(叶建东)2,3, Rong Zhang(张荣)2,3, You-Dou Zheng(郑有炓)2,3, and Shu-Lin Gu(顾书林)2,3,‡ |
1 School of Integrated Circuits, Anhui University, Hefei 230039, China; 2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China |
|
|
Abstract This work investigates the suppression and compensation effect of oxygen on the behaviors and characteristics of heavily boron-doped microwave plasma chemical vapor deposition (MPCVD) diamond films. The suppression effect of oxygen on boron incorporation is observed by an improvement in crystal quality when oxygen is added during the diamond doping process. A relatively low hole concentration is expected and verified by Hall effect measurements due to the compensation effect of oxygen as a deep donor in diamond. A low acceptor concentration, high compensation donor concentration and relatively larger acceptor ionization energy are then induced by the incorporation of oxygen; however, a heavily boron-doped diamond film with high crystal quality can also be expected. The formation of an oxygen-boron complex structure instead of oxygen substitution, as indicated by the results of x-ray photoelectron spectroscopy, is suggested to be more responsible for the observed enhanced compensation effect due to its predicted low formation energy. Meanwhile, density functional theory calculations show that the boron-oxygen complex structure is easily formed in diamond with a formation energy of -0.83 eV. This work provides a comprehensive understanding of oxygen compensation in heavily boron-doped diamond.
|
Received: 11 March 2022
Revised: 10 June 2022
Accepted manuscript online: 08 July 2022
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61775203, 61574075, 61974059, 61674077, 61774081, and 91850112), the State Key Research and Development Project of Jiangsu, China (Grant No. BE2018115), State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices (Grant No. 2017KF001), and Anhui University Natural Science Research Project (Grant No. KJ2021A0037). |
Corresponding Authors:
Kun Tang, Shu-Lin Gu
E-mail: ktang@nju.edu.cn;slgu@nju.edu.cn
|
Cite this article:
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林) Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films 2023 Chin. Phys. B 32 038101
|
[1] Guo C Y, Zheng J G, Deng H W, Shi P H and Zhao G H 2021 Carbon 175 454 [2] Liu T, Yang X G, Li Z, Hu Y W, Lv C F, Zhao W B, Zang J H and Shan C X 2020 Chin. Phys. B 29 108102 [3] Zhang T T, Pramanik G, Zhang K, Gulka M, Wang L Z, Jing J X, Xu F, Li Z F, Wei Q, Cigler P and Chu Z Q 2021 ACS Sens. 6 2077 [4] Wang S H, Wang T and Tang Y B 2021 Small 17 2007529 [5] Yu S Y, Yang N J, Liu S T and Jiang X 2021 Carbon 175 440 [6] HU X J and Li N 2013 Chin. Phys. Lett. 30 088102 [7] Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Su K, Li Y and Hao Y 2018 Chin. Phys. Lett. 35 078101 [8] Sheng L X, Chen C K, Jiang M Y, Li X and Hu X J 2020 Chin. Phys. B 29 088101 [9] Yang B, Li H N, Yu B, Lu J Q, Huang N, Liu L S and Jiang X 2021 Carbon 171 455 [10] Li H D, Zou G T, Wang Q L, Cheng S H, Li B, Lv J N, Lv Z Y and Jin Z S 2008 Chin. Phys. Lett. 25 1803 [11] Wang Q L, Lv X Y, Li L A, Cheng S H and Li H D 2010 Chin. Phys. Lett. 27 047802 [12] Mortet V, Živcová Z V, Taylor A, Davydová M, Frank O, Hubík P, Lorincik J and Aleshin M 2019 Diam. Relat. Mater. 93 54 [13] Yang M C, Wan L F, Wang J C, Ma Z C, Wang P, Gao N and Li H D 2020 Chin. Phys. Lett. 37 066801 [14] Kubo Y, Temgoua S, Issaoui R, Barjon J and Naka N 2019 Appl. Phys. Lett. 114 132104 [15] Soleimanzadeh R, Naamoun M, Floriduz A, Khadar R A, Erp R V and Matioli E 2021 ACS Appl. Mater. Interfaces 13 43516 [16] Imanishi S, Kudara K, Ishiwata H, Horikawa K, Amano S, Iwatak M, Morishita A, Hiraiwa A and Kawarada H 2020 IEEE Electr. Device L. 42 204 [17] Liu D Y, Hao L C, Chen Z A, Zhao W K, Shen Y, Bian Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y D and Gu S L 2020 Appl. Phys. Lett. 117 022101 [18] Hao L C, Shen Y, Yang X D, Bian Y, Du Q Q, Liu D Y, Zhao W K, Ye J D, Tang K, Wu H P, Zhang R, Zheng Y D and Gu S L 2020 J. Phys. D: Appl. Phys. 53 075107 [19] Issaoui R, Achard J, William L, Thaury M A P and Benedic F 2019 Diam. Relat. Mater. 94 88 [20] Issaoui R, Achard J, Silva F, Tallaire A, Mille V and Gicquel A 2011 Phys. Status Solidi A 208 2023 [21] Achard J, Issaoui R, Tellier A, F. Silva1, Barjon J, Jomard F and Gicquel A 2012 Phys. Status Solidi A 209 1651 [22] Volpe P N, Arnault J C, Tranchant N, Chicot G, Pernot J, Jomard F and Bergonzo P 2012 Diam. Relat. Mater. 22 136 [23] Bogdanov S A, Vikharev A L, Drozdov M N and Radishev D B 2017 Diam. Relat. Mater. 74 59 [24] Hu X J, Shen Y G, Hao X P and Wang B Y 2009 Diam. Relat. Mater. 18 210 [25] Hu X J, Ye J S, Liu H J, Hu H and Chen X H 2011 Diam. Relat. Mater. 20 246 [26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Grimme S 2006 J. Comput. Chem. 27 1787 [29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [30] Fiori A and Teraji T 2017 Diam. Relat. Mater. 76 38 [31] Blank V D, Denisov V N, Kirichenko A N, Kuznetsov M S, Mavrin B N, Nosukhin S A and Terentiev S A 2008 Diam. Relat. Mater. 17 1840 [32] Karna S K, Martyshkin D V, Vohra Y K and Weir S T 2013 MRS Online Proceedings Library 1519 [33] Zhou Z Y, Chen G C, Tang W Z and Lv F X 2006 Chin. Phys. 15 1009 [34] Vandeveldea T, Wu T D, Quaeyhaegens C, Vlekken J, DOlieslaeger M and Stals L 1999 Thin Solid Films 340 159 [35] Nicley S S 2015 The boron doping of single crystal diamond for high power diode applications (ProQuest Dissertations Publishing) [36] Barjon J, Chikoidze E, Jomard F, Dumont Y, Pinault-Thaury M A, Issaoui R, Brinza O, Achard J and Silva F 2012 Phys. Status Solid A 209 1750 [37] Rossi K L, Budzinski R C, Boaretto B R R, Prado T L, Feude U and Lopes S R 2021 Chaos 31 083121 [38] Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petigirard S, Bina C R and Jacobsen S D 2019 Proc. Natl. Acad. Sci. USA 116 7703 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|