Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038101    DOI: 10.1088/1674-1056/ac7f8a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films

Li-Cai Hao(郝礼才)1, Zi-Ang Chen(陈子昂)2,3, Dong-Yang Liu(刘东阳)2,3, Wei-Kang Zhao(赵伟康)2,3, Ming Zhang(张鸣)2,3, Kun Tang(汤琨)2,3,†, Shun-Ming Zhu(朱顺明)2,3, Jian-Dong Ye(叶建东)2,3, Rong Zhang(张荣)2,3, You-Dou Zheng(郑有炓)2,3, and Shu-Lin Gu(顾书林)2,3,‡
1 School of Integrated Circuits, Anhui University, Hefei 230039, China;
2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Abstract  This work investigates the suppression and compensation effect of oxygen on the behaviors and characteristics of heavily boron-doped microwave plasma chemical vapor deposition (MPCVD) diamond films. The suppression effect of oxygen on boron incorporation is observed by an improvement in crystal quality when oxygen is added during the diamond doping process. A relatively low hole concentration is expected and verified by Hall effect measurements due to the compensation effect of oxygen as a deep donor in diamond. A low acceptor concentration, high compensation donor concentration and relatively larger acceptor ionization energy are then induced by the incorporation of oxygen; however, a heavily boron-doped diamond film with high crystal quality can also be expected. The formation of an oxygen-boron complex structure instead of oxygen substitution, as indicated by the results of x-ray photoelectron spectroscopy, is suggested to be more responsible for the observed enhanced compensation effect due to its predicted low formation energy. Meanwhile, density functional theory calculations show that the boron-oxygen complex structure is easily formed in diamond with a formation energy of -0.83 eV. This work provides a comprehensive understanding of oxygen compensation in heavily boron-doped diamond.
Keywords:  diamond      boron-oxygen co-doping      incorporation efficiency      ionization energy      compensation      boron-oxygen complex  
Received:  11 March 2022      Revised:  10 June 2022      Accepted manuscript online:  08 July 2022
PACS:  81.05.ug (Diamond)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61775203, 61574075, 61974059, 61674077, 61774081, and 91850112), the State Key Research and Development Project of Jiangsu, China (Grant No. BE2018115), State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices (Grant No. 2017KF001), and Anhui University Natural Science Research Project (Grant No. KJ2021A0037).
Corresponding Authors:  Kun Tang, Shu-Lin Gu     E-mail:  ktang@nju.edu.cn;slgu@nju.edu.cn

Cite this article: 

Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林) Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films 2023 Chin. Phys. B 32 038101

[1] Guo C Y, Zheng J G, Deng H W, Shi P H and Zhao G H 2021 Carbon 175 454
[2] Liu T, Yang X G, Li Z, Hu Y W, Lv C F, Zhao W B, Zang J H and Shan C X 2020 Chin. Phys. B 29 108102
[3] Zhang T T, Pramanik G, Zhang K, Gulka M, Wang L Z, Jing J X, Xu F, Li Z F, Wei Q, Cigler P and Chu Z Q 2021 ACS Sens. 6 2077
[4] Wang S H, Wang T and Tang Y B 2021 Small 17 2007529
[5] Yu S Y, Yang N J, Liu S T and Jiang X 2021 Carbon 175 440
[6] HU X J and Li N 2013 Chin. Phys. Lett. 30 088102
[7] Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Su K, Li Y and Hao Y 2018 Chin. Phys. Lett. 35 078101
[8] Sheng L X, Chen C K, Jiang M Y, Li X and Hu X J 2020 Chin. Phys. B 29 088101
[9] Yang B, Li H N, Yu B, Lu J Q, Huang N, Liu L S and Jiang X 2021 Carbon 171 455
[10] Li H D, Zou G T, Wang Q L, Cheng S H, Li B, Lv J N, Lv Z Y and Jin Z S 2008 Chin. Phys. Lett. 25 1803
[11] Wang Q L, Lv X Y, Li L A, Cheng S H and Li H D 2010 Chin. Phys. Lett. 27 047802
[12] Mortet V, Živcová Z V, Taylor A, Davydová M, Frank O, Hubík P, Lorincik J and Aleshin M 2019 Diam. Relat. Mater. 93 54
[13] Yang M C, Wan L F, Wang J C, Ma Z C, Wang P, Gao N and Li H D 2020 Chin. Phys. Lett. 37 066801
[14] Kubo Y, Temgoua S, Issaoui R, Barjon J and Naka N 2019 Appl. Phys. Lett. 114 132104
[15] Soleimanzadeh R, Naamoun M, Floriduz A, Khadar R A, Erp R V and Matioli E 2021 ACS Appl. Mater. Interfaces 13 43516
[16] Imanishi S, Kudara K, Ishiwata H, Horikawa K, Amano S, Iwatak M, Morishita A, Hiraiwa A and Kawarada H 2020 IEEE Electr. Device L. 42 204
[17] Liu D Y, Hao L C, Chen Z A, Zhao W K, Shen Y, Bian Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y D and Gu S L 2020 Appl. Phys. Lett. 117 022101
[18] Hao L C, Shen Y, Yang X D, Bian Y, Du Q Q, Liu D Y, Zhao W K, Ye J D, Tang K, Wu H P, Zhang R, Zheng Y D and Gu S L 2020 J. Phys. D: Appl. Phys. 53 075107
[19] Issaoui R, Achard J, William L, Thaury M A P and Benedic F 2019 Diam. Relat. Mater. 94 88
[20] Issaoui R, Achard J, Silva F, Tallaire A, Mille V and Gicquel A 2011 Phys. Status Solidi A 208 2023
[21] Achard J, Issaoui R, Tellier A, F. Silva1, Barjon J, Jomard F and Gicquel A 2012 Phys. Status Solidi A 209 1651
[22] Volpe P N, Arnault J C, Tranchant N, Chicot G, Pernot J, Jomard F and Bergonzo P 2012 Diam. Relat. Mater. 22 136
[23] Bogdanov S A, Vikharev A L, Drozdov M N and Radishev D B 2017 Diam. Relat. Mater. 74 59
[24] Hu X J, Shen Y G, Hao X P and Wang B Y 2009 Diam. Relat. Mater. 18 210
[25] Hu X J, Ye J S, Liu H J, Hu H and Chen X H 2011 Diam. Relat. Mater. 20 246
[26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Grimme S 2006 J. Comput. Chem. 27 1787
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Fiori A and Teraji T 2017 Diam. Relat. Mater. 76 38
[31] Blank V D, Denisov V N, Kirichenko A N, Kuznetsov M S, Mavrin B N, Nosukhin S A and Terentiev S A 2008 Diam. Relat. Mater. 17 1840
[32] Karna S K, Martyshkin D V, Vohra Y K and Weir S T 2013 MRS Online Proceedings Library 1519
[33] Zhou Z Y, Chen G C, Tang W Z and Lv F X 2006 Chin. Phys. 15 1009
[34] Vandeveldea T, Wu T D, Quaeyhaegens C, Vlekken J, DOlieslaeger M and Stals L 1999 Thin Solid Films 340 159
[35] Nicley S S 2015 The boron doping of single crystal diamond for high power diode applications (ProQuest Dissertations Publishing)
[36] Barjon J, Chikoidze E, Jomard F, Dumont Y, Pinault-Thaury M A, Issaoui R, Brinza O, Achard J and Silva F 2012 Phys. Status Solid A 209 1750
[37] Rossi K L, Budzinski R C, Boaretto B R R, Prado T L, Feude U and Lopes S R 2021 Chaos 31 083121
[38] Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petigirard S, Bina C R and Jacobsen S D 2019 Proc. Natl. Acad. Sci. USA 116 7703
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[6] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[7] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[10] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[11] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[12] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[13] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[14] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[15] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
No Suggested Reading articles found!