CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6 |
Chaoxin Huang(黄潮欣)1,†, Benyuan Cheng(程本源)2,3,†, Yunwei Zhang(张云蔚)1, Long Jiang(姜隆)4, Lisi Li(李历斯)1, Mengwu Huo(霍梦五)1, Hui Liu(刘晖)1, Xing Huang(黄星)1, Feixiang Liang(梁飞翔)1, Lan Chen(陈岚)1, Hualei Sun(孙华蕾)1, and Meng Wang(王猛)1,‡ |
1 Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 Shanghai Institute of Laser Plasma, Shanghai 201800, China; 3 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; 4 Instrumentation Analysis and Research Center, Sun Yat-Sen UniVersity, Guangzhou 510275, China |
|
|
Abstract We report the synthesis and characterization of a Si-based ternary semiconductor Mg3Si2Te6, which exhibits a quasi-two-dimensional structure, where the trigonal Mg2Si2Te6 layers are separated by Mg ions. Ultraviolet-visible absorption spectroscopy and density functional theory calculations were performed to investigate the electronic structure. The experimentally determined direct band gap is 1.39 eV, consistent with the value of the density function theory calculations. Our results reveal that Mg3Si2Te6 is a direct gap semiconductor, which is a potential candidate for near-infrared optoelectronic devices.
|
Received: 31 August 2022
Revised: 28 October 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
78.40.Fy
|
(Semiconductors)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174454, 11904414, 11904416, and 12104427), the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021B1515120015), the Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201011123), and the National Key Research and Development Program of China (Grant No. 2019YFA0705702). |
Corresponding Authors:
Chaoxin Huang, Benyuan Cheng, Meng Wang
E-mail: wangmeng5@mail.sysu.edu.cn
|
Cite this article:
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛) Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6 2023 Chin. Phys. B 32 037802
|
[1] Elliott C T 1998 Infrared Technology and Applications XXIV (San Diego: SPIE) pp. 763-775 [2] Maier H and Hesse J 1980 Organic Crystals, Germanates, Semiconductors 4 145 [3] Bauer G and Clemens H 1990 Semicond. Sci. Technol. 5 S122 [4] Xie L, Wang J, Li J, Li C, Zhang Y, Zhu B P, Guo Y Z, Wang Z C and Zhang K 2021 Adv. Electron. Mater. 7 2000962 [5] Zhang H D, Liu H Y, Wei K Y, Kurakevych O O, Le Godec Y, Liu Z X, Martin J, Guerrette M, Nolas G S and Strobel T A 2017 Phys. Rev. Lett. 118 146601 [6] Ripka P, and Janosek M 2010 IEEE Sensors Journal 10 1108 [7] Heremans J, Partin D L, Thrush C M and Green L 1993 Semiconductor Science and Technology 8 S424 [8] Solin S A, Thio T, Hines D R and Heremans J J 2000 American Association for the Advancement of Science 289 1530 [9] Berus T, Oszwaldowski M and Grabowski J 2004 Sensors and Actuators A: Physical 116 75 [10] Mihajlović G, Xiong P, Von Molnár S, Ohtani K, Ohno H, Field M and Sullivan G J 2005 Appl. Phys. Lett. 87 112502 [11] Cheng P and Yang Y 2020 Accounts of Chemical Research 53 1218 [12] Zheng J Y, Zhou H J, Zou Y Q, Wang R L, Lyu Yan H and Wang S Y 2019 Energy & Environmental Science 12 2345 [13] Tournie E and Baranov A N 2012 Semiconductors and Semimetals 86 183 [14] Harman T C and Melngailis I 1974 Applied Solid State Science (Amsterdam: Elsevier) pp. 1-94 [15] Downs C and Vandervelde T E 2013 Sensors 13 5054 [16] Martyniuk P and Rogalski A 2008 Progress in Quantum Electronics 32 89 [17] Chen W, Deng Z, Guo D Q, Chen Y J, Mazur Y I, Maidaniuk Y, Benamara M, Salamo G J, Liu H Y, Wu J and Chen B L 2018 Journal of Lightwave Technology 36 2572 [18] Pasquini C 2003 Journal of the Brazilian Chemical Society 14 198 [19] Li J C and Pu K Y 2003 Chem. Soc. Rev. 48 38 [20] Mei L Y, Huang R F, Shen C R, Hu J G, Wang P, Xu Z J, Huang Z F and Zhu L 2003 Adv. Opt. Mater. 10 2102656 [21] Rogalski A 2005 Reports on Progress in Physics 68 2267 [22] Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303 [23] Piotrowski J and Rogalski A 2004 Infrared Physics & Technology 46 115 [24] Piotrowski J and Rogalski A 1998 Sensors and Actuators A: Physical 67 146 [25] Jiao H X, Wang X D, Chen Y, Guo S F, Wu S Q, Song C Y, Huang S Y, Huang X N, Tai X C, Lin T, Shen H, Yan H, Hu W D, Meng X J, Chu J H, Zhang Y B and Wang J L 2022 Science Advances 8 eabn1811 [26] Yang S H, Peng J H, Huang H F, Li Z X, Dong H F and Wu F G 2022 Materials Science in Semiconductor Processing 144 106552 [27] Yin J J, Wu C W, Li L S, Yu J, Sun H L, Shen B, Frandsen B A, Yao D X and Wang M 2020 Phys. Rev. Materials 4 013405 [28] Sun H L, Chen C Q, Hou Y S, Wang W L, Gong Y, Huo M W, Li L S, Yu J, Cai W P, Liu N T, Wu R Q, Yao D X and Wang M 2021 Sci. China: Phys. Mech. Astron. 64 118211 [29] Li L S, Hu X W, Liu Z J, Yu J, Cheng B Y, Deng S H, He L H, Cao K, Yao D X and Wang M 2021 Sci. China: Phys. Mech. Astron. 64 287412 [30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [31] Vargas Hernández R A 2020 J. Phys. Chem. A 124 4053 [32] Carteaux V, Brunet D, Ouvrard G and Andre G 1995 J. Phys.: Condens. Matter 7 69 [33] Cai W P, Sun H L, Xia W, Wu C W, Liu Y, Liu H, Gong Y, Yao D X, Guo Y F and Wang M 2020 Phys. Rev. B 102 144525 [34] Vincent H, Leroux D, Bijaoui D, Rimet R and Schlenker C 1986 Journal of Solid State Chemistry 63 349 [35] May A F, Cao H B and Calder S 2020 J. Magn. Magnet. Mater. 511 166936 [36] Ni Y F, Zhao H D, Zhang Y, Hu B, Kimchi I and Cao G 2021 Phys. Rev. B 103 L161105 [37] Seo J, De C, Ha H, Lee J E, Park S, Park J, Skourski Y, Choi E S, Kim B and Cho G Y, Yeom H W, Cheong S W, Kim J H, Yang B J, Kim K and Kim J S 2021 Nature 599 576 [38] Wang Z, Xia H, Wang P, et al. 2021 Adv. Mater. 33 2104942 [39] Chen J W, Li L, Gong P L, Zhang H L, Yin S Q, Li M, Wu L F, Gao W S, Long M S, Shan L, Yan F, and Li G H 2022 ACS Nano 16 7745 [40] Sarkar A, Loho C, Velasco L, Thomas T, Bhattacharya S S, Hahn H, and Djenadic R 2017 Dalton Transactions 46 12167 [41] Tauc J, Grigorovici R and Vancu A 1966 Physica Status Solidi (b) 15 627 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|