CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor |
Meixia Cheng(程梅霞)1, Suzhen Luan(栾苏珍)1,†, Hailin Wang(王海林)1, and Renxu Jia(贾仁需)2 |
1 The Key Laboratory of Heterogeneous Network Convergence Communication, Xi'an University of Science and Technology, Xi'an 710600, China; 2 The Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract Ga$_{2}$O$_{3}$ is difficult to achieve p-type doping, which further hinders the development of Ga$_{2}$O$_{3}$-based power devices and is not conducive to the development of new devices with high power density and low power consumption. This paper expounds a $\beta $-Ga$_{2}$O$_{3}$/4H-SiC heterojunction lateral metal-oxide-semiconductor field-effect transistor (HJFET), which can make better use of the characteristics of PN junction by adding p-doped SiC in the channel region. Compared with the conventional devices, the threshold voltage of the heterojunction metal-oxide-semiconductor field-effect transistor (MOSFET) is greatly improved, and normally-off operation is realized, showing a positive threshold voltage of 0.82 V. Meanwhile, the off-state breakdown voltage of the device is up to 1817 V, and the maximum transconductance is 15.3 mS/mm. The optimal PFOM is obtained by simulating the thickness, length and doping of the SiC in each region of the epitaxial layer. This structure provides a feasible idea for high performance $\beta $-Ga$_{2}$O$_{3 }$ MOSFET.
|
Received: 10 September 2022
Revised: 31 October 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974119 and 61834005). |
Corresponding Authors:
Suzhen Luan
E-mail: szluan@xust.edu.cn
|
Cite this article:
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需) Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor 2023 Chin. Phys. B 32 037302
|
[1] Green A J, Chabak K D, Baldini M, et al. 2017 IEEE Electron Dev. Lett. 38 790 [2] Jia X, Hu H, Han G, et al. 2021 Nanoscale Res. Lett. 16 1 [3] Konishi K, Goto K, Murakami H, et al. 2017 Appl. Phys. Lett. 110 103506 [4] Byung Kyu ChungYang J, Ahn S, Ren F, et al. 2017 Appl. Phys. Lett. 110 192101 [5] Sasaki K, Wakimoto D, Thieu Q T, et al. 2017 IEEE Electron Dev. Lett. 38 783 [6] Wang C, Zhang J, Xu S, et al. 2021 J. Phys. D: Appl. Phys. 54 243001 [7] Zhou X, Liu Q, Xu G, et al. 2021 IEEE Trans. Electron Dev. 68 1501 [8] Dong L, Jia R, Li C, et al. 2017 J. Alloys Compd. 712 379 [9] Higashiwaki M, Sasaki K, Kuramata A, et al. 2012 Appl. Phys. Lett. 100 013504 [10] Higashiwaki M, Sasaki K, Kamimura T, et al. 2013 Appl. Phys. Lett. 103 123511 [11] Zeng K, Vaidya A and Singisetti U 2018 IEEE Electron Dev. Lett. 39 1385 [12] Tetzner K, Bahat Treidel E, Hilt O, et al. 2019 IEEE Electron Dev. Lett. 40 1503 [13] Sharma S, Zeng K, Saha S, et al. 2020 IEEE Electron Dev. Lett. 41 836 [14] Je J Y, Yong Y J, Ho L C, et al. 2021 Appl. Surf. Sci. 558 149936 [15] Zhang J, Han S, Cui M, et al. 2020 ACS Appl. Electron. Mater. 2 456 [16] Chabak K D, Moser N, Green A J, et al. 2016 Appl. Phys. Lett. 109 213501 [17] Chabak K, Green A, Moser N, et al. 2017 75th Annual IEEE DeviceX Research Conference (DRC) [18] Chabak K D, McCandless J P, Moser N A, et al. 2018 IEEE Electron Dev. Lett. 39 67 [19] Hu Z, Nomoto K, Li W, et al. 2018 IEEE Electron Dev. Lett. 39 869 [20] Wong H Y, Braga N, Mickevicius R V, et al. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018 p. 379 [21] Wong M H, Murakami H, Kumagai Y, et al. 2020 IEEE Electron Dev. Lett. 41 296 [22] Lv Y, Zhou X, Long S, et al. 2019 Physica Status Solidi Rapid Research Letters 14 1900586 [23] Li C, Chen C, Chen J, et al. 2020 J. Semicond. 41 082002 [24] Kim J and Kim J 2020 ACS Appl. Mater. Interfaces 12 7310 [25] Kim J, Mastro M A, Tadjer M J, et al. 2017 ACS Appl. Mater. Interfaces 9 21322 [26] Wang X, Yan S, Mu W, et al. 2022 IEEE Electron Dev. Lett. 43 44 [27] Dong H, Xue H, He Q, et al. 2019 J. Semicond. 40 011802 [28] Ghosh K and Singisetti U 2017 J. Appl. Phys. 122 035702 [29] Park J and Hong S 2019 ECS J. Solid State Sci. Technol. 8 Q3116 [30] Qu Y, Wu Z, Ai M, et al. 2016 J. Alloys Compd. 680 247 [31] Lv Y, Zhou X, Long S, et al. 2019 IEEE Electron Dev. Lett. 40 83 [32] Guo L, Zhang Y, Luan S, et al. 2022 Chin. Phys. B 31 017304 [33] Vivona M, Giannazzo F and Roccaforte F 2021 Materials (Basel) 15 298 [34] Liu Z, Li P G, Zhi Y S, et al. 2019 Chin. Phys. B 28 017105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|