Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037302    DOI: 10.1088/1674-1056/aca39c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor

Meixia Cheng(程梅霞)1, Suzhen Luan(栾苏珍)1,†, Hailin Wang(王海林)1, and Renxu Jia(贾仁需)2
1 The Key Laboratory of Heterogeneous Network Convergence Communication, Xi'an University of Science and Technology, Xi'an 710600, China;
2 The Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Ga$_{2}$O$_{3}$ is difficult to achieve p-type doping, which further hinders the development of Ga$_{2}$O$_{3}$-based power devices and is not conducive to the development of new devices with high power density and low power consumption. This paper expounds a $\beta $-Ga$_{2}$O$_{3}$/4H-SiC heterojunction lateral metal-oxide-semiconductor field-effect transistor (HJFET), which can make better use of the characteristics of PN junction by adding p-doped SiC in the channel region. Compared with the conventional devices, the threshold voltage of the heterojunction metal-oxide-semiconductor field-effect transistor (MOSFET) is greatly improved, and normally-off operation is realized, showing a positive threshold voltage of 0.82 V. Meanwhile, the off-state breakdown voltage of the device is up to 1817 V, and the maximum transconductance is 15.3 mS/mm. The optimal PFOM is obtained by simulating the thickness, length and doping of the SiC in each region of the epitaxial layer. This structure provides a feasible idea for high performance $\beta $-Ga$_{2}$O$_{3 }$ MOSFET.
Keywords:  MOSFET      heterojunction      threshold voltage  
Received:  10 September 2022      Revised:  31 October 2022      Accepted manuscript online:  17 November 2022
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974119 and 61834005).
Corresponding Authors:  Suzhen Luan     E-mail:  szluan@xust.edu.cn

Cite this article: 

Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需) Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor 2023 Chin. Phys. B 32 037302

[1] Green A J, Chabak K D, Baldini M, et al. 2017 IEEE Electron Dev. Lett. 38 790
[2] Jia X, Hu H, Han G, et al. 2021 Nanoscale Res. Lett. 16 1
[3] Konishi K, Goto K, Murakami H, et al. 2017 Appl. Phys. Lett. 110 103506
[4] Byung Kyu ChungYang J, Ahn S, Ren F, et al. 2017 Appl. Phys. Lett. 110 192101
[5] Sasaki K, Wakimoto D, Thieu Q T, et al. 2017 IEEE Electron Dev. Lett. 38 783
[6] Wang C, Zhang J, Xu S, et al. 2021 J. Phys. D: Appl. Phys. 54 243001
[7] Zhou X, Liu Q, Xu G, et al. 2021 IEEE Trans. Electron Dev. 68 1501
[8] Dong L, Jia R, Li C, et al. 2017 J. Alloys Compd. 712 379
[9] Higashiwaki M, Sasaki K, Kuramata A, et al. 2012 Appl. Phys. Lett. 100 013504
[10] Higashiwaki M, Sasaki K, Kamimura T, et al. 2013 Appl. Phys. Lett. 103 123511
[11] Zeng K, Vaidya A and Singisetti U 2018 IEEE Electron Dev. Lett. 39 1385
[12] Tetzner K, Bahat Treidel E, Hilt O, et al. 2019 IEEE Electron Dev. Lett. 40 1503
[13] Sharma S, Zeng K, Saha S, et al. 2020 IEEE Electron Dev. Lett. 41 836
[14] Je J Y, Yong Y J, Ho L C, et al. 2021 Appl. Surf. Sci. 558 149936
[15] Zhang J, Han S, Cui M, et al. 2020 ACS Appl. Electron. Mater. 2 456
[16] Chabak K D, Moser N, Green A J, et al. 2016 Appl. Phys. Lett. 109 213501
[17] Chabak K, Green A, Moser N, et al. 2017 75th Annual IEEE DeviceX Research Conference (DRC)
[18] Chabak K D, McCandless J P, Moser N A, et al. 2018 IEEE Electron Dev. Lett. 39 67
[19] Hu Z, Nomoto K, Li W, et al. 2018 IEEE Electron Dev. Lett. 39 869
[20] Wong H Y, Braga N, Mickevicius R V, et al. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018 p. 379
[21] Wong M H, Murakami H, Kumagai Y, et al. 2020 IEEE Electron Dev. Lett. 41 296
[22] Lv Y, Zhou X, Long S, et al. 2019 Physica Status Solidi Rapid Research Letters 14 1900586
[23] Li C, Chen C, Chen J, et al. 2020 J. Semicond. 41 082002
[24] Kim J and Kim J 2020 ACS Appl. Mater. Interfaces 12 7310
[25] Kim J, Mastro M A, Tadjer M J, et al. 2017 ACS Appl. Mater. Interfaces 9 21322
[26] Wang X, Yan S, Mu W, et al. 2022 IEEE Electron Dev. Lett. 43 44
[27] Dong H, Xue H, He Q, et al. 2019 J. Semicond. 40 011802
[28] Ghosh K and Singisetti U 2017 J. Appl. Phys. 122 035702
[29] Park J and Hong S 2019 ECS J. Solid State Sci. Technol. 8 Q3116
[30] Qu Y, Wu Z, Ai M, et al. 2016 J. Alloys Compd. 680 247
[31] Lv Y, Zhou X, Long S, et al. 2019 IEEE Electron Dev. Lett. 40 83
[32] Guo L, Zhang Y, Luan S, et al. 2022 Chin. Phys. B 31 017304
[33] Vivona M, Giannazzo F and Roccaforte F 2021 Materials (Basel) 15 298
[34] Liu Z, Li P G, Zhi Y S, et al. 2019 Chin. Phys. B 28 017105
[1] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[7] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[8] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[9] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[10] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[11] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[12] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[13] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[14] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[15] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
No Suggested Reading articles found!