Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 026802    DOI: 10.1088/1674-1056/ac6865
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy

Chuang Wang(王闯)1,2, Xiao-Dong Gao(高晓冬)2, Di-Di Li(李迪迪)2, Jing-Jing Chen(陈晶晶)2, Jia-Fan Chen(陈家凡)2, Xiao-Ming Dong(董晓鸣)2, Xiaodan Wang(王晓丹)3, Jun Huang(黄俊)2, Xiong-Hui Zeng(曾雄辉)1,2,†, and Ke Xu(徐科)1,2,4,5,‡
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China;
2 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
3 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
4 Shenyang National Laboratory for Materials Science, Jiangsu Institute of Advanced Semiconductors, Suzhou 215000, China;
5 Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123, China
Abstract  A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates (NPSSs) by hydride vapor phase epitaxy (HVPE). The coalescence, stress evolution, and dislocation annihilation mechanisms in the AlN layer have been investigated. The large voids located on the pattern region were caused by the undesirable parasitic crystallites grown on the sidewalls of the nano-pattern in the early growth stage. The coalescence of the c-plane AlN was hindered by these three-fold crystallites and the special triangle void appeared. The cross-sectional Raman line scan was used to characterize the change of stress with film thickness, which corresponds to the characteristics of different growth stages of AlN. Threading dislocations (TDs) mainly originate from the boundary between misaligned crystallites and the c-plane AlN and the coalescence of two adjacent c-plane AlN crystals, rather than the interface between sapphire and AlN.
Keywords:  hydride vapor phase epitaxy (HVPE)      AlN      threading dislocations      nano-patterned sapphire substrate  
Received:  27 January 2022      Revised:  11 April 2022      Accepted manuscript online:  20 April 2022
PACS:  68.55.-a (Thin film structure and morphology)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974158) and the Natural Science Fund of Jiangsu Province, China (Grant No. BK20191456).
Corresponding Authors:  Xiong-Hui Zeng, Ke Xu     E-mail:  xhzeng2007@sinano.ac.cn;kxu2006@sinano.ac.cn

Cite this article: 

Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科) Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy 2023 Chin. Phys. B 32 026802

[1] Li K H, Liu X, Wang Q, Zhao S and Mi Z 2015 Nat. Nanotechnol. 10 140
[2] Hirayamal H, Maeda N, Fujikawa S, Toyoda S and Kamata N 2014 Jpn. J. Appl. Phys. 53 100209
[3] Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson N M and Weyers M 2010 Semicond. Sci. Technol. 26 014036
[4] Yan J C, Wang J X, Zhang Y, Cong P P, Sun L L, Tian Y D, Zhao C and Li J M 2015 J. Cryst. Growth 414 254
[5] Dong P, Yan J C, Zhang Y, Wang J X, Zeng J P, Geng C, Cong P P, Sun L L, Wei T B, Zhao L X, Yan Q F, He C G, Qin Z X and Li J M 2014 J. Cryst. Growth 395 9
[6] Boichot R, Chen DY, Mercier F, Baillet F, Giusti G, Coughlan T, Chubarov M and Pons M 2017 Coatings 7 136
[7] Huang J, Niu M T, Zhang J C, wang W, Wang J F and Xu K 2017 J. Cryst. Growth 459 159
[8] Freitas Jr. JA, Culbertson J C, Mastro M A, Kumagai Y and Koukitu A 2012 J. Cryst. Growth 350 33
[9] Zhang X, Xu F J, Wan g J M, He C G, Zhang L S, Huang J, Cheng J P, Qin Z X, Yang XL, Tang N, Wang X Q and Shen B 2015 Cryst. Eng. Comm. 17 7496
[10] Conroy M, Zubialevich V Z, Li H, Conroy M, Zubialevich V Z, Li H N, Petkov N, Holmes J D and Parbrook P J 2015 J. Mater. Chem. C 3 431
[11] Pantha B N, Dahal R, Nakarmi M L, Nepal N, Li J, Lin J Y and Jiang H X 2007 Appl. Phys. Lett. 90 241101
[12] Tang B, Hu H P, Wan H, Zhao J, Gong L Y, Lei Y, Zhao Q and Zhou S J 2020 Appl. Surf. Sci. 518 146218
[13] Jain R, Sun W, Yang J, Shatalov M, Hu X, Sattu A, Lunev A, Deng J, Shturm I, Bilenko Y, Gaska R and Shur M S 2008 Appl. Phys. Lett. 93 051113
[14] Banal R G, Akashi Y, Matsuda K, Hayashi Y, Funato M and Kawakami Y 2013 Jpn. J. Appl. Phys. 52 08JB21
[15] Imura M, Nakano K, Narita G, Fujimoto N, Okadaa N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T and Bandoh A 2007 J. Cryst. Growth 298 257
[16] Ben J W, Shi Z M, Zang H, Sun X J, Liu X K, Lu W and Li D B 2020 Appl. Phys. Lett. 116 251601
[17] Liu X H, Zhang J C, Su X J, Hung J, Zheng S N, Hu Y Y, Ye B B, Zhao J J, Wang J F, Zhang J C and Xu K 2016 Appl. Phys. Express 9 045501
[18] Long H L, Dai J N, Zhang Y, Wang S, Tan B, Zhang S, Xu L L, Shan M C, Feng Z C, Kuo H C and Chen C Q 2019 Appl. Phys. Lett. 114 042101
[19] Iba Y, Shojiki K, Uesugi K, Xiao S Y and Miyake H 2020 J. Cryst. Growth 532 125397
[20] Xu F J, Zhang L S, Xie N, Wang M X, Sun Y H, Liu B Y, Ge W K, Wang X Q and Shen B 2019 Cryst. Eng. Comm. 21 2490
[21] Wang T Y, Tasi C T, Lin K Y, Huang S Y, Horng R H and Wuu D S 2018 Appl. Surf. Sci. 455 1123
[22] Xiao S Y, Jiang N, Shojiki K, Uesugi K and Miyake H 2019 Jpn. J. Appl. Phys. 58 SC1003
[23] Xiao S Y, Shojiki K and Miyake H 2021 J. Cryst. Growth 566 126163
[24] Xie N, Xu F J, Wang J M, Sun Y H, Liu B Y, Zhang N, Lang J, Fang X Z, Ge W K, Qin Z X, Kang X N, Yang X L, Wang X Q and Shen B 2020 Appl. Phys. Express 13 015504
[25] Taniyasu Y, Kasu M and Makimoto T 2007 J. Cryst. Growth 298 310
[26] Uesugi K, Shojiki K, Tezen Y, Hayashi Y and Miyake H 2020 Appl. Phys. Lett. 116 062101
[27] Tasi CT, Wang W K, Tsai T Y, Huang S Y, Horng R H and Wuu D S 2017 Materials 10 605
[28] Claudel A, Fellmanna V Gélard I, Couduriera N, Sauvage D, Balajiab M, Blanquet E, Boichot R, Beutier G, Coindeaub S, Pierrete A, Attal-Trétout B, Luca S, Criscib A, Baskar K and Pons M 2014 Thin Solid Films 573 140
[29] Takami M, Kurisu A, Abe Y, Okada N and Tadatomo K 2011 Phys. Status Solidi C 8 2101
[30] Okada N, Kurisu A, Murakami K and Tadatomo K 2009 Appl. Phys. Express 2 091001
[31] Sun C J, Kung P, Saxler A, Ohsato H, Haritos K and Razeghi M 1994 J. Appl. Phys. 75 3964
[32] Fleischmann S, Mogilatenko A, Hagedorn S, Richter E, Goran D, Schäfer P, Zeimer U, Weyers M and Tränkle G 2015 J. Cryst. Growth 414 32
[33] Huang J, Niu M T, Sun M S, Su X J and Xu K 2019 Cryst. Eng. Comm. 21 2431
[34] Li D D, Chen J J, Su X J, Huang J, Niu M T, Xu J T and Xu K 2021 Chin. Phys. B 30 036801
[35] Su X J, Huang J, Zhang J P, Wang J F and Xu K 2019 J. Cryst. Growth 515 72
[36] Zhang L S, Xu F J, Wang J M, Chen G, Guo W W, Wang M X, Sheng B W, Lu L, Qin Z X, Wang X Q and Shen B 2016 Sci. Rep. 6 1
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[3] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[4] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[5] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[6] Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE
Xiao Wang(王骁), Yu-Min Zhang(张育民), Yu Xu(徐俞), Zhi-Wei Si(司志伟), Ke Xu(徐科), Jian-Feng Wang(王建峰), and Bing Cao(曹冰). Chin. Phys. B, 2021, 30(6): 067306.
[7] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[8] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[9] Growth and doping of bulk GaN by hydride vapor phase epitaxy
Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), De-Min Cai(蔡德敏), Guo-Qiang Ren(任国强), Yu Xu(徐俞), Ming-Yue Wang(王明月), Xiao-Jian Hu(胡晓剑), Ke Xu(徐科). Chin. Phys. B, 2020, 29(2): 026104.
[10] Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study
Ruilin Han(韩瑞林), Xiaoyang Chen(陈晓阳), Yu Yan(闫羽). Chin. Phys. B, 2017, 26(9): 097503.
[11] Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors
Yan Liu(刘艳), Zhao-Jun Lin(林兆军), Yuan-Jie Lv(吕元杰), Peng Cui(崔鹏), Chen Fu(付晨), Ruilong Han(韩瑞龙), Yu Huo(霍宇), Ming Yang(杨铭). Chin. Phys. B, 2017, 26(9): 097104.
[12] Electronic, optical, and mechanical properties of BN, AlN, and InN with zinc-blende structure under pressure
A R Degheidy, E B Elkenany. Chin. Phys. B, 2017, 26(8): 086103.
[13] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[14] Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy
Qing-Jun Xu(徐庆君), Bin Liu(刘斌), Shi-Ying Zhang(张士英), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(4): 047801.
[15] Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study
Rui-Lin Han(韩瑞林), Shi-Min Jiang(姜世民), Yu Yan(闫羽). Chin. Phys. B, 2017, 26(2): 027502.
No Suggested Reading articles found!