CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy |
Chuang Wang(王闯)1,2, Xiao-Dong Gao(高晓冬)2, Di-Di Li(李迪迪)2, Jing-Jing Chen(陈晶晶)2, Jia-Fan Chen(陈家凡)2, Xiao-Ming Dong(董晓鸣)2, Xiaodan Wang(王晓丹)3, Jun Huang(黄俊)2, Xiong-Hui Zeng(曾雄辉)1,2,†, and Ke Xu(徐科)1,2,4,5,‡ |
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; 2 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China; 3 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; 4 Shenyang National Laboratory for Materials Science, Jiangsu Institute of Advanced Semiconductors, Suzhou 215000, China; 5 Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123, China |
|
|
Abstract A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates (NPSSs) by hydride vapor phase epitaxy (HVPE). The coalescence, stress evolution, and dislocation annihilation mechanisms in the AlN layer have been investigated. The large voids located on the pattern region were caused by the undesirable parasitic crystallites grown on the sidewalls of the nano-pattern in the early growth stage. The coalescence of the c-plane AlN was hindered by these three-fold crystallites and the special triangle void appeared. The cross-sectional Raman line scan was used to characterize the change of stress with film thickness, which corresponds to the characteristics of different growth stages of AlN. Threading dislocations (TDs) mainly originate from the boundary between misaligned crystallites and the c-plane AlN and the coalescence of two adjacent c-plane AlN crystals, rather than the interface between sapphire and AlN.
|
Received: 27 January 2022
Revised: 11 April 2022
Accepted manuscript online: 20 April 2022
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974158) and the Natural Science Fund of Jiangsu Province, China (Grant No. BK20191456). |
Corresponding Authors:
Xiong-Hui Zeng, Ke Xu
E-mail: xhzeng2007@sinano.ac.cn;kxu2006@sinano.ac.cn
|
Cite this article:
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科) Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy 2023 Chin. Phys. B 32 026802
|
[1] Li K H, Liu X, Wang Q, Zhao S and Mi Z 2015 Nat. Nanotechnol. 10 140 [2] Hirayamal H, Maeda N, Fujikawa S, Toyoda S and Kamata N 2014 Jpn. J. Appl. Phys. 53 100209 [3] Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson N M and Weyers M 2010 Semicond. Sci. Technol. 26 014036 [4] Yan J C, Wang J X, Zhang Y, Cong P P, Sun L L, Tian Y D, Zhao C and Li J M 2015 J. Cryst. Growth 414 254 [5] Dong P, Yan J C, Zhang Y, Wang J X, Zeng J P, Geng C, Cong P P, Sun L L, Wei T B, Zhao L X, Yan Q F, He C G, Qin Z X and Li J M 2014 J. Cryst. Growth 395 9 [6] Boichot R, Chen DY, Mercier F, Baillet F, Giusti G, Coughlan T, Chubarov M and Pons M 2017 Coatings 7 136 [7] Huang J, Niu M T, Zhang J C, wang W, Wang J F and Xu K 2017 J. Cryst. Growth 459 159 [8] Freitas Jr. JA, Culbertson J C, Mastro M A, Kumagai Y and Koukitu A 2012 J. Cryst. Growth 350 33 [9] Zhang X, Xu F J, Wan g J M, He C G, Zhang L S, Huang J, Cheng J P, Qin Z X, Yang XL, Tang N, Wang X Q and Shen B 2015 Cryst. Eng. Comm. 17 7496 [10] Conroy M, Zubialevich V Z, Li H, Conroy M, Zubialevich V Z, Li H N, Petkov N, Holmes J D and Parbrook P J 2015 J. Mater. Chem. C 3 431 [11] Pantha B N, Dahal R, Nakarmi M L, Nepal N, Li J, Lin J Y and Jiang H X 2007 Appl. Phys. Lett. 90 241101 [12] Tang B, Hu H P, Wan H, Zhao J, Gong L Y, Lei Y, Zhao Q and Zhou S J 2020 Appl. Surf. Sci. 518 146218 [13] Jain R, Sun W, Yang J, Shatalov M, Hu X, Sattu A, Lunev A, Deng J, Shturm I, Bilenko Y, Gaska R and Shur M S 2008 Appl. Phys. Lett. 93 051113 [14] Banal R G, Akashi Y, Matsuda K, Hayashi Y, Funato M and Kawakami Y 2013 Jpn. J. Appl. Phys. 52 08JB21 [15] Imura M, Nakano K, Narita G, Fujimoto N, Okadaa N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T and Bandoh A 2007 J. Cryst. Growth 298 257 [16] Ben J W, Shi Z M, Zang H, Sun X J, Liu X K, Lu W and Li D B 2020 Appl. Phys. Lett. 116 251601 [17] Liu X H, Zhang J C, Su X J, Hung J, Zheng S N, Hu Y Y, Ye B B, Zhao J J, Wang J F, Zhang J C and Xu K 2016 Appl. Phys. Express 9 045501 [18] Long H L, Dai J N, Zhang Y, Wang S, Tan B, Zhang S, Xu L L, Shan M C, Feng Z C, Kuo H C and Chen C Q 2019 Appl. Phys. Lett. 114 042101 [19] Iba Y, Shojiki K, Uesugi K, Xiao S Y and Miyake H 2020 J. Cryst. Growth 532 125397 [20] Xu F J, Zhang L S, Xie N, Wang M X, Sun Y H, Liu B Y, Ge W K, Wang X Q and Shen B 2019 Cryst. Eng. Comm. 21 2490 [21] Wang T Y, Tasi C T, Lin K Y, Huang S Y, Horng R H and Wuu D S 2018 Appl. Surf. Sci. 455 1123 [22] Xiao S Y, Jiang N, Shojiki K, Uesugi K and Miyake H 2019 Jpn. J. Appl. Phys. 58 SC1003 [23] Xiao S Y, Shojiki K and Miyake H 2021 J. Cryst. Growth 566 126163 [24] Xie N, Xu F J, Wang J M, Sun Y H, Liu B Y, Zhang N, Lang J, Fang X Z, Ge W K, Qin Z X, Kang X N, Yang X L, Wang X Q and Shen B 2020 Appl. Phys. Express 13 015504 [25] Taniyasu Y, Kasu M and Makimoto T 2007 J. Cryst. Growth 298 310 [26] Uesugi K, Shojiki K, Tezen Y, Hayashi Y and Miyake H 2020 Appl. Phys. Lett. 116 062101 [27] Tasi CT, Wang W K, Tsai T Y, Huang S Y, Horng R H and Wuu D S 2017 Materials 10 605 [28] Claudel A, Fellmanna V Gélard I, Couduriera N, Sauvage D, Balajiab M, Blanquet E, Boichot R, Beutier G, Coindeaub S, Pierrete A, Attal-Trétout B, Luca S, Criscib A, Baskar K and Pons M 2014 Thin Solid Films 573 140 [29] Takami M, Kurisu A, Abe Y, Okada N and Tadatomo K 2011 Phys. Status Solidi C 8 2101 [30] Okada N, Kurisu A, Murakami K and Tadatomo K 2009 Appl. Phys. Express 2 091001 [31] Sun C J, Kung P, Saxler A, Ohsato H, Haritos K and Razeghi M 1994 J. Appl. Phys. 75 3964 [32] Fleischmann S, Mogilatenko A, Hagedorn S, Richter E, Goran D, Schäfer P, Zeimer U, Weyers M and Tränkle G 2015 J. Cryst. Growth 414 32 [33] Huang J, Niu M T, Sun M S, Su X J and Xu K 2019 Cryst. Eng. Comm. 21 2431 [34] Li D D, Chen J J, Su X J, Huang J, Niu M T, Xu J T and Xu K 2021 Chin. Phys. B 30 036801 [35] Su X J, Huang J, Zhang J P, Wang J F and Xu K 2019 J. Cryst. Growth 515 72 [36] Zhang L S, Xu F J, Wang J M, Chen G, Guo W W, Wang M X, Sheng B W, Lu L, Qin Z X, Wang X Q and Shen B 2016 Sci. Rep. 6 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|