CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Liquid-liquid phase transition in confined liquid titanium |
Di Zhang(张迪)1, Yunrui Duan(段云瑞)2, Peiru Zheng(郑培儒)1, Yingjie Ma(马英杰)1, Junping Qian(钱俊平)1, Zhichao Li(李志超)1, Jian Huang(黄建)1, Yanyan Jiang(蒋妍彦)1,†, and Hui Li(李辉)1,‡ |
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China; 2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract We report the layering and liquid-liquid phase transition of liquid titanium confined between two parallel panel walls. Abnormal changes in the volume and the potential energy confirm the existence of the liquid-liquid phase transition of the liquid titanium. The typical feature of the liquid-liquid phase transition is layering, which is induced by the slit size, pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid-liquid phase transition of liquid metal in a confined space.
|
Received: 11 February 2022
Revised: 21 April 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
68.18.Jk
|
(Phase transitions in liquid thin films)
|
|
61.30.Hn
|
(Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)
|
|
61.25.Mv
|
(Liquid metals and alloys)
|
|
61.30.Pq
|
(Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1806219 and 52171038), the Special Funding in the Project of the Taishan Scholar Construction Engineering and the Program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019), and Key R&D Projects in Shandong Province, China (Grant No. 2021SFGC1001). |
Corresponding Authors:
Yanyan Jiang, Hui Li
E-mail: yanyan.jiang@sdu.edu.cn;lihuilmy@hotmail.com
|
Cite this article:
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉) Liquid-liquid phase transition in confined liquid titanium 2023 Chin. Phys. B 32 026801
|
[1] Bennemann K H 2011 J. Phys.: Condens. Matter 23 073202 [2] Tan J, Zhang L, Hsieh M C, Goodwin J T, Grover M A and Lynn D G 2021 Chem. Sci. 12 3025 [3] Li W, Qian X and Li J 2021 Nat. Rev. Mater. 6 829 [4] Yoshimi T, Shima A, Hagiwara-Norifusa S, Sugimoto T, Nagoe A and Fujimori H 2020 Crystals 10 792 [5] Xu Z, Feng Y, Zheng S, Jin A, Wang F and Yao X 2002 J. Appl. Phys. 92 2663 [6] Wang K, Kou Z, Ma H, Wang Y, Wang S, Xu C, Guan J and He D 2012 Solid State Commun. 152 540 [7] He Y, Li H, Jiang Y, Li X and Bian X 2014 Sci. Rep. 4 3635 [8] Wu W, Zhang L, Liu S, Ren H, Zhou X and Li H 2016 J. Am. Chem. Soc. 138 2815 [9] Duan Y, Li J, Li T, Zhang X, Wang Z and Li H 2018 Phys. Chem. Chem. Phys. 20 9337 [10] Ori G, Villemot F, Viau L, Vioux A and Coasne B 2014 Mol. Phys. 112 1350 [11] Ju X, Cui H, Liu T, Sun Y, Zheng S and Qu X 2021 R. Soc. Open Sci. 8 210428 [12] Del Campo P, Martinez C and Corma A 2021 Chem. Soc. Rev. 50 8511 [13] Du J, Lv H, Zhang Y and Chen A 2021 ChemElectroChem 8 2028 [14] Zhao X, Zhang C, Yang G, Wu Y, Fu Q, Zhao H and Lei Y 2021 Inorg. Chem. Front. 8 4267 [15] He G, Wang P, Feng K, Dong H, Zhao H, Sun F, Yin H, Li W and Li G 2021 Macromolecules 54 906 [16] Wang P, Jiang L, Zou X, Tan H, Zhang P, Li J, Liu B and Zhu G 2020 ACS Appl. Mater. Interfaces 12 25910 [17] Liu C, Cai J, Dang P, Li X and Zhang D 2020 ACS Appl. Mater. Interfaces 12 12101 [18] Mitra S, Sharma V K and Mukhopadhyay R 2021 Rep. Prog. Phys. 84 066501 [19] Jing Y, Jadhao V, Zwanikken J W and Olvera de la Cruz M 2015 J. Chem. Phys. 143 194508 [20] Ribeiro de Almeida R R, Michels F S, Steffen V, Lenzi E K, Zola R S and Evangelista L R 2013 Chem. Phys. Lett. 588 87 [21] Park S and McDaniel J G 2020 J. Chem. Phys. 152 074709 [22] Wang B, Ye Y, Xu L, Quan Y, Wei W, Zhu W, Li H and Xia J 2020 Adv. Funct. Mater. 30 2005834 [23] Li J, Chen S, Li W, Wu R, Ibraheem S, Li J, Ding W, Li L and Wei Z 2018 J. Mater. Chem. A 6 15504 [24] Wan L, Zang X, Fu J, Zhou X, Lu J, Guan J and Liang D 2021 Nanomaterials 11 590 [25] Both A K, Gao Y, Zeng X C and Cheung C L 2021 Nanoscale 13 7447 [26] Du S, Han X, Zheng L, Qin S, Arif M, Yan D, Yu X and Li H 2021 J. Phys. Chem. C 125 7889 [27] Abbaspour M, Jorabchi M N, Akbarzadeh H and Ebrahimnejad A 2021 RSC Adv. 11 24594 [28] Singh M P, Singh R K and Chandra S 2014 Prog. Mater. Sci. 64 73 [29] Krass M D, Gosvami N N, Carpick R W, Muser M H and Bennewitz R 2016 J. Phys.: Condens. Matter 28 134004 [30] Gao J S, Ndong R S, Shiflett M B and Wagner N J 2015 Acs Nano 9 3243 [31] Dietschi D and Fahl N Jr 2016 Br. Dent. J. 221 765 [32] Stumme J, Ashokkumar O, Dillmann S, Niestroj-Pahl R and Ernst M 2021 Membranes 11 106 [33] Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L and Hilal N 2015 Desalination 356 226 [34] Anil Kumar V, Gupta R K, Prasad M J N V and Narayana Murty S V S 2021 J. Mater. Res. 36 689 [35] Mihai D, Mihalache R, Popa I F, Vintila I S, Datcu D, Ciocan I, Braic V, Pana I, Kiss A E, Zoita N C and Burlacu P 2021 Acta Astronaut. 184 101 [36] Manil P, Jan Y, Nunio F, Lomello F, Arhancet A, Lacroix M, Bachet D and Lapresle J 2020 Proc. SPIE 11451 114512 [37] Kurup A, Dhatrak P and Khasnis N 2021 Mater. Today: Proc. 39 84 [38] Loveless C S, Blanco J R, Diehl G L, 3rd, Elbahrawi R T, Carzaniga T S, Braccini S and Lapi S E 2021 J. Nucl. Med. 62 131 [39] Ulusaloglu A C, Atici T, Ermutlu C and Akesen S 2021 J. Int. Med. Res. 49 300060520984931 [40] Kodama J, Chen H, Zhou T, Kushioka J, Okada R, Tsukazaki H, Tateiwa D, Nakagawa S, Ukon Y, Bal Z, Tian H, Zhao J and Kaito T 2021 Spine J 21 1217 [41] Zhao Q M, Li X K, Guo S, Wang N, Liu W W, Shi L and Guo Z 2020 Mater. Sci. Eng. C 110 110682 [42] Ackland G J 1992 Philosophical Magazine A 66 917 [43] Kim J S, Seol D, Ji J, Jang H S, Kim Y and Lee B J 2017 Calphad 59 131 [44] Kavousi S, Novak B R, Baskes M I, Zaeem M A and Moldovan D 2019 Modelling Simulation in Materials Science Engineering 28 015006 [45] Chen X, Lu S, Zhao Y, Fu T, Huang C and Peng X 2018 Mater. Sci. Eng. A 712 592 [46] Shao C, Ong W L, Shiomi J and McGaughey A J 2021 J. Phys. Chem. B 125 4527 [47] Thomas J A and McGaughey A J 2008 Nano Lett. 8 2788 [48] Shi R, Shao J, Zhu X and Lu X 2011 J. Phys. Chem. C 115 2961 [49] Nie G, Huang J and Huang J 2016 J. Phys. Chem. B 120 9011 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|