Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 026801    DOI: 10.1088/1674-1056/ac6dc0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Liquid-liquid phase transition in confined liquid titanium

Di Zhang(张迪)1, Yunrui Duan(段云瑞)2, Peiru Zheng(郑培儒)1, Yingjie Ma(马英杰)1, Junping Qian(钱俊平)1, Zhichao Li(李志超)1, Jian Huang(黄建)1, Yanyan Jiang(蒋妍彦)1,†, and Hui Li(李辉)1,‡
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We report the layering and liquid-liquid phase transition of liquid titanium confined between two parallel panel walls. Abnormal changes in the volume and the potential energy confirm the existence of the liquid-liquid phase transition of the liquid titanium. The typical feature of the liquid-liquid phase transition is layering, which is induced by the slit size, pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid-liquid phase transition of liquid metal in a confined space.
Keywords:  titanium      layering transition      liquid-liquid phase transition      confined space  
Received:  11 February 2022      Revised:  21 April 2022      Accepted manuscript online:  07 May 2022
PACS:  68.18.Jk (Phase transitions in liquid thin films)  
  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  61.25.Mv (Liquid metals and alloys)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1806219 and 52171038), the Special Funding in the Project of the Taishan Scholar Construction Engineering and the Program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019), and Key R&D Projects in Shandong Province, China (Grant No. 2021SFGC1001).
Corresponding Authors:  Yanyan Jiang, Hui Li     E-mail:  yanyan.jiang@sdu.edu.cn;lihuilmy@hotmail.com

Cite this article: 

Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉) Liquid-liquid phase transition in confined liquid titanium 2023 Chin. Phys. B 32 026801

[1] Bennemann K H 2011 J. Phys.: Condens. Matter 23 073202
[2] Tan J, Zhang L, Hsieh M C, Goodwin J T, Grover M A and Lynn D G 2021 Chem. Sci. 12 3025
[3] Li W, Qian X and Li J 2021 Nat. Rev. Mater. 6 829
[4] Yoshimi T, Shima A, Hagiwara-Norifusa S, Sugimoto T, Nagoe A and Fujimori H 2020 Crystals 10 792
[5] Xu Z, Feng Y, Zheng S, Jin A, Wang F and Yao X 2002 J. Appl. Phys. 92 2663
[6] Wang K, Kou Z, Ma H, Wang Y, Wang S, Xu C, Guan J and He D 2012 Solid State Commun. 152 540
[7] He Y, Li H, Jiang Y, Li X and Bian X 2014 Sci. Rep. 4 3635
[8] Wu W, Zhang L, Liu S, Ren H, Zhou X and Li H 2016 J. Am. Chem. Soc. 138 2815
[9] Duan Y, Li J, Li T, Zhang X, Wang Z and Li H 2018 Phys. Chem. Chem. Phys. 20 9337
[10] Ori G, Villemot F, Viau L, Vioux A and Coasne B 2014 Mol. Phys. 112 1350
[11] Ju X, Cui H, Liu T, Sun Y, Zheng S and Qu X 2021 R. Soc. Open Sci. 8 210428
[12] Del Campo P, Martinez C and Corma A 2021 Chem. Soc. Rev. 50 8511
[13] Du J, Lv H, Zhang Y and Chen A 2021 ChemElectroChem 8 2028
[14] Zhao X, Zhang C, Yang G, Wu Y, Fu Q, Zhao H and Lei Y 2021 Inorg. Chem. Front. 8 4267
[15] He G, Wang P, Feng K, Dong H, Zhao H, Sun F, Yin H, Li W and Li G 2021 Macromolecules 54 906
[16] Wang P, Jiang L, Zou X, Tan H, Zhang P, Li J, Liu B and Zhu G 2020 ACS Appl. Mater. Interfaces 12 25910
[17] Liu C, Cai J, Dang P, Li X and Zhang D 2020 ACS Appl. Mater. Interfaces 12 12101
[18] Mitra S, Sharma V K and Mukhopadhyay R 2021 Rep. Prog. Phys. 84 066501
[19] Jing Y, Jadhao V, Zwanikken J W and Olvera de la Cruz M 2015 J. Chem. Phys. 143 194508
[20] Ribeiro de Almeida R R, Michels F S, Steffen V, Lenzi E K, Zola R S and Evangelista L R 2013 Chem. Phys. Lett. 588 87
[21] Park S and McDaniel J G 2020 J. Chem. Phys. 152 074709
[22] Wang B, Ye Y, Xu L, Quan Y, Wei W, Zhu W, Li H and Xia J 2020 Adv. Funct. Mater. 30 2005834
[23] Li J, Chen S, Li W, Wu R, Ibraheem S, Li J, Ding W, Li L and Wei Z 2018 J. Mater. Chem. A 6 15504
[24] Wan L, Zang X, Fu J, Zhou X, Lu J, Guan J and Liang D 2021 Nanomaterials 11 590
[25] Both A K, Gao Y, Zeng X C and Cheung C L 2021 Nanoscale 13 7447
[26] Du S, Han X, Zheng L, Qin S, Arif M, Yan D, Yu X and Li H 2021 J. Phys. Chem. C 125 7889
[27] Abbaspour M, Jorabchi M N, Akbarzadeh H and Ebrahimnejad A 2021 RSC Adv. 11 24594
[28] Singh M P, Singh R K and Chandra S 2014 Prog. Mater. Sci. 64 73
[29] Krass M D, Gosvami N N, Carpick R W, Muser M H and Bennewitz R 2016 J. Phys.: Condens. Matter 28 134004
[30] Gao J S, Ndong R S, Shiflett M B and Wagner N J 2015 Acs Nano 9 3243
[31] Dietschi D and Fahl N Jr 2016 Br. Dent. J. 221 765
[32] Stumme J, Ashokkumar O, Dillmann S, Niestroj-Pahl R and Ernst M 2021 Membranes 11 106
[33] Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L and Hilal N 2015 Desalination 356 226
[34] Anil Kumar V, Gupta R K, Prasad M J N V and Narayana Murty S V S 2021 J. Mater. Res. 36 689
[35] Mihai D, Mihalache R, Popa I F, Vintila I S, Datcu D, Ciocan I, Braic V, Pana I, Kiss A E, Zoita N C and Burlacu P 2021 Acta Astronaut. 184 101
[36] Manil P, Jan Y, Nunio F, Lomello F, Arhancet A, Lacroix M, Bachet D and Lapresle J 2020 Proc. SPIE 11451 114512
[37] Kurup A, Dhatrak P and Khasnis N 2021 Mater. Today: Proc. 39 84
[38] Loveless C S, Blanco J R, Diehl G L, 3rd, Elbahrawi R T, Carzaniga T S, Braccini S and Lapi S E 2021 J. Nucl. Med. 62 131
[39] Ulusaloglu A C, Atici T, Ermutlu C and Akesen S 2021 J. Int. Med. Res. 49 300060520984931
[40] Kodama J, Chen H, Zhou T, Kushioka J, Okada R, Tsukazaki H, Tateiwa D, Nakagawa S, Ukon Y, Bal Z, Tian H, Zhao J and Kaito T 2021 Spine J 21 1217
[41] Zhao Q M, Li X K, Guo S, Wang N, Liu W W, Shi L and Guo Z 2020 Mater. Sci. Eng. C 110 110682
[42] Ackland G J 1992 Philosophical Magazine A 66 917
[43] Kim J S, Seol D, Ji J, Jang H S, Kim Y and Lee B J 2017 Calphad 59 131
[44] Kavousi S, Novak B R, Baskes M I, Zaeem M A and Moldovan D 2019 Modelling Simulation in Materials Science Engineering 28 015006
[45] Chen X, Lu S, Zhao Y, Fu T, Huang C and Peng X 2018 Mater. Sci. Eng. A 712 592
[46] Shao C, Ong W L, Shiomi J and McGaughey A J 2021 J. Phys. Chem. B 125 4527
[47] Thomas J A and McGaughey A J 2008 Nano Lett. 8 2788
[48] Shi R, Shao J, Zhu X and Lu X 2011 J. Phys. Chem. C 115 2961
[49] Nie G, Huang J and Huang J 2016 J. Phys. Chem. B 120 9011
[1] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[2] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[3] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[4] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[5] Effect of AlN coating on hydrogen permeability and surface structure of VT6 alloy by vacuum arc ion plating
Zi-Yi Ding(丁子祎). Chin. Phys. B, 2019, 28(10): 108101.
[6] Superconductivity of bilayer titanium/indium thin film grown on SiO2/Si (001)
Zhao-Hong Mo(莫钊洪), Chao Lu(路超), Yi Liu(刘毅), Wei Feng(冯卫), Yun Zhang(张云), Wen Zhang(张文), Shi-Yong Tan(谭世勇), Hong-Jun Zhang(张宏俊), Chun-Yu Guo(郭春煜), Xiao-Dong Wang(汪小冬), Liang Wang(王亮), Rui-Zhu Yang(杨蕊竹), Zhong-Guo Ren(任忠国), Xie-Gang Zhu(朱燮刚), Zhong-Hua Xiong(熊忠华), Qi An(安琪), Xin-Chun Lai(赖新春). Chin. Phys. B, 2018, 27(6): 067403.
[7] Growth mode of helium crystal near dislocations in titanium
Bao-Ling Zhang(张宝玲), Bao-Wen Wang(王保文), Xue Su(苏雪), Xiao-Yong Song(宋小勇), Min Li(李敏). Chin. Phys. B, 2018, 27(6): 060205.
[8] Influence of high pulsed magnetic field on tensile properties of TC4 alloy
Gui-Rong Li(李桂荣), Fang-Fang Wang(王芳芳), Hong-Ming Wang(王宏明), Rui Zheng(郑瑞), Fei Xue(薛飞), Jiang-Feng Cheng(程江峰). Chin. Phys. B, 2017, 26(4): 046201.
[9] Spatial heterogeneity in liquid-liquid phase transition
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉). Chin. Phys. B, 2017, 26(3): 036401.
[10] Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation
Gui-Jun Cheng(程贵钧), Bao-Qin Fu(付宝勤), Qing Hou(侯氢), Xiao-Song Zhou(周晓松), Jun Wang(汪俊). Chin. Phys. B, 2016, 25(7): 076602.
[11] A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing
Chenliang Liang(梁晨亮), Weili Liu(刘卫丽), Shasha Li(李沙沙), Hui Kong(孔慧), Zefang Zhang(张泽芳), Zhitang Song(宋志棠). Chin. Phys. B, 2016, 25(5): 058301.
[12] Vibrational features of confined water in nanoporous TiO2 by Raman spectra
Xin Gao(高欣), Qiang Wang(王强), Gang Sun(孙刚), Chen-Xi Li(李晨曦), Lin Hu(胡林). Chin. Phys. B, 2016, 25(2): 026801.
[13] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[14] Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals
Qin Xiu-Bo (秦秀波), Li Dong-Xiang (李东翔), Li Rui-Qin (李瑞琴), Zhang Peng (张鹏), Li Yu-Xiao (李玉晓), Wang Bao-Yi (王宝义). Chin. Phys. B, 2014, 23(6): 067502.
[15] Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier
Tian Xiao-Bo (田晓波), Xu Hui (徐晖). Chin. Phys. B, 2014, 23(6): 068401.
No Suggested Reading articles found!