CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals |
Qin Xiu-Bo (秦秀波)a d, Li Dong-Xiang (李东翔)b, Li Rui-Qin (李瑞琴)b, Zhang Peng (张鹏)a, Li Yu-Xiao (李玉晓)c, Wang Bao-Yi (王宝义)a |
a Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; b School of Mathematics and Physics, Anshun University, Anshun 561000, China; c School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China; d Division for Nuclear Technology and Application, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.
|
Received: 29 July 2013
Revised: 03 December 2013
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61006066). |
Corresponding Authors:
Qin Xiu-Bo
E-mail: qinxb@ihep.ac.cn
|
Cite this article:
Qin Xiu-Bo (秦秀波), Li Dong-Xiang (李东翔), Li Rui-Qin (李瑞琴), Zhang Peng (张鹏), Li Yu-Xiao (李玉晓), Wang Bao-Yi (王宝义) Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals 2014 Chin. Phys. B 23 067502
|
[1] |
Pearton S J, Heo W H, Ivill M 1, Norton D P and Steiner T 2004 Semicond. Sci. Technol. 19 R59
|
[2] |
Pammaraju C D and Sanvito S 2005 Phys. Rev. Lett. 94 217205
|
[3] |
Zhang B Y, Yao B, Li Y F, Liu A M, Zhang Z Z, Li B H, Xing G Z, Wu T, Qin X B, Zhao D X, Shan C X and Shen D Z 2011 Appl. Phys. Lett. 99 182503
|
[4] |
Li W Q, Cao J X, Ding G W and Hu X D 2011 J. Appl. Phys. 110 123908
|
[5] |
Bao N N, Fan H M, Ding J and Yi J B 2011 J. Appl. Phys. 109 07C302
|
[6] |
Ney A, Ollefs K, Ye S, Kammermeier T, Ney V, Kaspar T C, Chambers S A, Wilhelm F and Rogalev A 2008 Phys. Rev. Lett. 100 157201
|
[7] |
Kaspar T C, Droubay T, Heald S M, Nachimuthu P, Wang C M, Shutthanandan V, Johnson C A, Gamelin D R and Chambers S A 2008 New J. Phys. 10 055010
|
[8] |
Yi J B, Lim C C, Xing G Z, Fan H M, Van L H, Huang S L, Yang K S, Huang X L, Qin X B, Wang B Y, Wu T, Wang L, Zhang H T, Gao X Y, Liu T, Wee A T S, Feng Y P and Ding J 2010 Phys. Rev. Lett. 104 137201
|
[9] |
Long R and English N J 2009 Phys. Lett. A 374 319
|
[10] |
Guan L X, Tao J G, Huan C H A, Kuo J L and Wang L 2009 Appl. Phys. Lett. 95 012509
|
[11] |
Tao J G, Guan L X, Pan G S, Huan C H A, Wang L, Kuo J L, Zhang Z, Chai J W and Wang S J 2009 Appl. Phys. Lett. 95 062505
|
[12] |
Wang H X, Zong Z C, Yan Yu and Qi S W 2012 J. Magn. Magn. Mater. 324 2858
|
[13] |
Golmar F, Mudarra Navarro A M, Rodíguez Torres C E, Sánchez F H, Saccone F D, dos Santos Claro P C, Benítez G A and Schilardi P L 2008 Appl. Phys. Lett. 92 262503
|
[14] |
Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
|
[15] |
Liu C M, Xiang X, Zhang Y, Jiang Y and Zu X T 2011 Chin. Phys. Lett. 28 127201
|
[16] |
Zhou S Q, Čižmár E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J and Schmidt H 2009 Phys. Rev. B 79 113201
|
[17] |
von Oertzen G U and Gerson A R 2007 J. Phys. Chem. Solids 68 324
|
[18] |
Tuomisto F and Ranki V 2007 Phys. Rev. B 76 165207
|
[19] |
Yang A L, Song H P, Liang D C, Wei H Y, Liu X L, Jin P, Qin X B, Yang S Y, Zhu Q S and Wang Z J 2010 Appl. Phys. Lett. 96 151904
|
[20] |
Drera G, Mozzati M C, Galinetto P, Diaz-Fernandez Y, Malavasi L, Bondino F, Malvestuto M and Sangaletti L 2010 Appl. Phys. Lett. 97 012506
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|