Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060205    DOI: 10.1088/1674-1056/27/6/060205
GENERAL Prev   Next  

Growth mode of helium crystal near dislocations in titanium

Bao-Ling Zhang(张宝玲)1,2, Bao-Wen Wang(王保文)1, Xue Su(苏雪)1, Xiao-Yong Song(宋小勇)1, Min Li(李敏)2
1 North China University of Water Resources and Electric Power, Zhengzhou 450011, China;
2 Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  The helium bubble structure and growth modes near dislocations in titanium are studied using the molecular dynamics method. A helium crystal with an HCP structure in titanium is found to have a lattice constant of 1.977 Å at 0 K. On either side of the slip plane, helium bubbles form in the (001) plane, but they are in different growth modes. On the side of the slip plane with full atomic layers, helium bubbles grow toward the slip plane and easily cross the slip plane. In the growth process, the position of the top surface of the helium bubble remains almost unchanged. On the other side of the slip plane, the helium bubble grows initially toward the dislocation core, but it is difficult to cross the slip plane, which results in growth in the opposite direction upon reaching the slip plane.
Keywords:  molecular dynamics      helium bubble structure      titanium  
Received:  07 December 2017      Revised:  31 January 2018      Accepted manuscript online: 
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  28.52.Fa (Materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11505120) and the Project of Innovative Talents of North China University of Water Resources and Electric Power,China (Grant No.70483).
Corresponding Authors:  Bao-Ling Zhang     E-mail:  zbaoling1234@163.com

Cite this article: 

Bao-Ling Zhang(张宝玲), Bao-Wen Wang(王保文), Xue Su(苏雪), Xiao-Yong Song(宋小勇), Min Li(李敏) Growth mode of helium crystal near dislocations in titanium 2018 Chin. Phys. B 27 060205

[1] Cottrell G A 2006 Mater. Sci. Technol. 22 869
[2] Dethloff C, Gaganidze E, Svetukhin V V and Aktaa J 2012 J. Nucl. Mater. 426 287
[3] Cheng G J, Shi L Q, Zhou X S, Liang J H and Wang W D 2015 J. Nucl. Mater. 466 615
[4] Klimenkov M, MÖslang A and Materna M E 2014 J. Nucl. Mater. 453 54
[5] Chen J, Jung P, Rebac T, Duvalb F, Sauvageb T, Carlanc D Y and Bartheb M F 2014 J. Nucl. Mater. 453 253
[6] Sakaguchi N, Ohguchi Y, Shibayama T, Watanabe S and Kinoshita H 2013 J. Nucl. Mater. 432 23
[7] Cipiti B B and Kulcinski G L 2005 J. Nucl. Mater. 347 298
[8] Bernard E, Sakamoto R, Yoshidaa N and Yamada H 2015 J. Nucl. Mater. 463 316
[9] Stoller R E and Osetsky Y N 2014 J. Nucl. Mater. 455 258
[10] Valles G, Gonzále C, Martin B I, glesias R and Perlado J M 2015 J. Nucl. Mater. 457 80
[11] Smirnov R D, Krasheninnikov S I and Guterl J 2015 J. Nucl. Mater. 463 359
[12] Li X C, Shu X L, Tao P, Yi Y B, Niu G J, Xu Y P, Gao F and Luo G N 2014 J. Nucl. Mater. 455 544
[13] Zhang L, Fu C C and Lv G H 2013 Phys. Rev. B 87 134107
[14] Li M, Wang J and Hou Q. 2012 J. Nucl. Mater. 423 22
[15] Zhou X S, Liu Q, Zhang L, Peng S M, Long X G, Ding W, Cheng G J, Wang W D, Liang J H and Fu Y Q 2014 Int. J. Hydrogen Energy 39 20062
[16] Zhang B L, Wang J and Li M 2013 J. Nucl. Mater. 438 178
[17] Wang J and Hou Q 2007 J. Appl. Phys. 102 093510
[18] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[19] Donnelly S E and Evans J H Fundamental Aspects of Inert Gases in Solids (New York:Plenum Press)
[20] Rodney D and Martin G 1999 Phys. Rev. Lett. 82 3272
[21] Chang J P, Bulatov V V and Yip S 1999 J. Computer-aided Materials Design 6 165
[22] Osetsky N Y and Bacon D J 2003 Model. Simul. Mater. Sci. Eng. 11 427
[23] Zhang B L, Song X Y, Hou Q and Wang J 2015 Acta Phys. Sin. 64 016202 (in Chinese)
[24] Maji S, Singh A and Nambissan P M 2001 Phys. Lett. A 281 76
[25] Hou Q, Hou M, Bardotti L, Prével B, Mélinon P and Perez A 2000 Phys. Rev. B 62 2825
[1] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!