CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Spatial heterogeneity in liquid-liquid phase transition |
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉) |
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061, China |
|
|
Abstract Molecular dynamics simulations are performed to investigate the liquid-liquid phase transition (LLPT) and the spatial heterogeneity in Al-Pb monotectic alloys. The results reveal that homogeneous liquid Al-Pb alloy undergoes an LLPT, separating into Al-rich and Pb-rich domains, which is quite different from the isocompositional liquid water with a transition between low-density liquid (LDL) and high-density liquid (HDL). With spatial heterogeneity becoming large, LLPT takes place correspondingly. The relationship between the cooling rate, relaxation temperature and percentage of Al and the spatial heterogeneity is also reported. This study may throw light on the relationship between the structure heterogeneity and LLPT, which provides novel strategies to control the microstructures in the fabrication of the material with high performance.
|
Received: 24 October 2016
Revised: 06 December 2016
Accepted manuscript online:
|
PACS:
|
64.70.Ja
|
(Liquid-liquid transitions)
|
|
64.75.St
|
(Phase separation and segregation in thin films)
|
|
64.60.My
|
(Metastable phases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51271100), the National Basic Research Program of China (Grant No. 2012CB825702), and the Special Funding in the Project of the Taishan Scholar Construction Engineering. |
Corresponding Authors:
Hui Li
E-mail: lihuilmy@hotmail.com
|
Cite this article:
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉) Spatial heterogeneity in liquid-liquid phase transition 2017 Chin. Phys. B 26 036401
|
[1] |
Vasisht V V, Saw S and Sastry S 2011 Nat. Phys. 7 549
|
[2] |
Sastry S and Angell C A 2003 Nat. Mater. 2 739
|
[3] |
Angell C A 2008 Science 319 582
|
[4] |
Speedy R J 1982 J. Chem. Phys. 86 982
|
[5] |
Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324
|
[6] |
Mishima O and Stanley H E 1998 Nature 392 164
|
[7] |
Wang W P, Liu F S and Zhang N C 2014 Acta Phys. Sin. 63 126201 (in Chinese)
|
[8] |
Liu J, Wang S Y, Zheng C P, Xin L J, Wang D and Sun M H 2007 Chin. Phys. Lett. 24 2025
|
[9] |
Kurita R, Murata K and Tanaka H 2008 Nat. Mater. 7 647
|
[10] |
Debenedetti P G 2003 J. Phys. Condens. Matter 15 R1669
|
[11] |
Mishima O and Stanley H E 1998 Nature 396 329
|
[12] |
Mallamace F, Broccio M, Corsaro C, Faraone A, Majolino D, Venuti V, Liu L, Mou C Y and Chen S H 2007 Proc. Natl. Acad. Sci. U. S. A. 104 424
|
[13] |
Gibson H M and Wilding N B 2006 Phys. Rev. E 73 061507
|
[14] |
Xu L, Buldyrev S V, Giovambattista N, Angell C A and Stanley H E 2009 J. Chem. Phys. 130 054505
|
[15] |
Aptekar L 1979 Sov. Phys. Dokl. 24 993
|
[16] |
Ponyatovskii E, Sinand V and Pozdnyakova T 1994 ZhETFPisma Redaktsiiu 60 352
|
[17] |
Moynihan C T 1996 J. Non-Cryst. Solids 203 359
|
[18] |
Poole P H, Sciortino F, Grande T, Stanley H E and Angell C A 1994 Phys. Rev. Lett. 73 1632
|
[19] |
Borick S S, Debenedetti P G and Sastry S 1995 J. Chem. Phys. 99 3781
|
[20] |
Tejero C F and Baus M 1998 Phys. Rev. E 57 4821
|
[21] |
Sciortino F, Saika-Voivod I and Poole P H 2011 Phys. Chem. Chem. Phys. 13 19759
|
[22] |
Liu Y, Palmer J C, Panagiotopoulos A Z and Debenedetti P G 2012 J. Chem. Phys. 137 214505
|
[23] |
Kesselring T A, Lascaris E, Franzese G, Buldyrev S V, Herrmann H J and Stanley H E 2013 J. Chem. Phys. 138 244506
|
[24] |
Poole P H, Bowles R K, Saika-Voivod I and Sciortino F 2013 J. Chem. Phys. 138 034505
|
[25] |
Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385
|
[26] |
Smallenburg F and Sciortino F 2015 Phys. Rev. Lett. 115 015701
|
[27] |
Abascal J L and Vega C 2010 J. Chem. Phys. 133 234502
|
[28] |
Russo J and Tanaka H 2014 Nat. Comm. 5 3556
|
[29] |
Sumi T and Sekino H 2013 RSC Adv. 3 12743
|
[30] |
Vega C, Abascal J L, Conde M and Aragones J 2009 Faraday Discuss. 141 251
|
[31] |
Deb S K, Wilding M, Somayazulu M and McMillan P F 2001 Nature 414 528
|
[32] |
McMillan P F, Wilson M, Daisenberger D and Machon D 2005 Nat. Mater. 4 680
|
[33] |
Daisenberger D, Wilson M, McMillan P F, Cabrera R Q, Wilding M C and Machon D 2007 Phys. Rev. B 75 224118
|
[34] |
Daisenberger D, Deschamps T, Champagnon B, Mezouar M, Quesada Cabrera R l, Wilson M and McMillan P F 2011 J. Phys. Chem. B 115 14246
|
[35] |
Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M and Funakoshi K 2000 Nature 403 170
|
[36] |
Monaco G, Falconi S, Crichton W and Mezouar M 2003 Phys. Rev. Lett. 90 255701
|
[37] |
Katayama Y, Inamura Y, Mizutani T, Yamakata M, Utsumi W and Shimomura O 2004 Science 306 848
|
[38] |
Zhang D D, Liu X R, He Z and Hong S M 2016 Chin. Phys. Lett. 33 026301
|
[39] |
Zhang D D, Liu X R, Hong S M, Li L B, Cui K P, Shao C G, He Z and Xu J A 2014 Chin. Phys. Lett. 31 066401
|
[40] |
Tang F, Zhang L J, Liu F L, Sun F, Yang W G, Wang J L, Liu X R and Shen R 2016 Chin. Phys. B 25 046102
|
[41] |
Tanaka H 2000 Phys. Rev. E 62 6968
|
[42] |
Tanaka H 2000 J. Chem. Phys. 112 799
|
[43] |
Tanaka H 2000 Europhys. Lett. 50 340
|
[44] |
Tanaka H 2012 Eur. Phys. J. E 35 1
|
[45] |
Poole P H, Grande T, Angell C A and McMillan P F 1997 Science 275 322
|
[46] |
Treacy M and Borisenko K 2012 Science 335 950
|
[47] |
Ratke L and Diefenbach S 1995 Mater. Sci. Eng. R. 15 263
|
[48] |
Ohnuma I, Saegusa T, Takaku Y, Wang C, Liu X, Kainuma R and Ishida K 2009 J. Electron. Mater. 38 2
|
[49] |
Shi R P, Wang C P, Wheeler D, Liu X J and Wang Y 2013 Acta Mater. 61 1229
|
[50] |
Cao C D 2006 Chin. Phys. B 15 872
|
[51] |
Ma C, Dou Z Y, Zhu H Y, Fu G Y, Tan X, Bai B, Zhang P C and Cui Q L 2016 Chin. Phys. B 25 046401
|
[52] |
Zhang X M, Wang W L, Ruan Y and Wei B B 2010 Chin. Phys. Lett. 27 026401
|
[53] |
Cao C D and Görler G P 2005 Chin. Phys. Lett. 22 482
|
[54] |
Li Z Q, Wang W L, Zhai W and Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese)
|
[55] |
Yan N, Wang W L, Dai F P and Wei B B 2011 Acta Phys. Sin. 60 036402 (in Chinese)
|
[56] |
Wu W, Zhang L, Liu S, Ren H, Zhou X and Li H 2016 J. Am. Chem. Soc. 138 2815
|
[57] |
He Y, Li H, Jiang Y, Li X and Bian X 2014 Sci. Rep. 4 3635
|
[58] |
Wang Z, Ito K, Leão J B, Harriger L, Liu Y and Chen S H 2015 J. Phys. Chem. Lett. 6 2009
|
[59] |
Bale C W and Bélisle E Fact-Web Suite of Interactive Programs, www.factsage.com
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|