Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020703    DOI: 10.1088/1674-1056/aca5fe
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor

Zhihong Lu(陆知宏)1,2,3, Shuai Ji(纪帅)1,2,3, and Jianzhong Yang(杨建中)1,2,3,†
1 Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
2 Beijing Innovation Center for Future Chips, Beijing 100084, China;
3 State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
Abstract  Several critical clinical applications of magnetocardiography (MCG) involve its T wave. The T wave's accuracy directly affects the diagnostic accuracy of MCG for ischemic heart disease and arrhythmogenic. Tunnel magnetoresistance (TMR) attracts attention as a new MCG measurement technique. However, the T waves measured by TMR are often drowned in noise. The accuracy of T waves needs to be discussed to determine the clinical value of MCG measured by TMR. This study uses an improved empirical mode decomposition (EMD) algorithm and averaging to eliminate the noise in the MCG measured by TMR. The MCG signals measured by TMR are compared with MCG measured by the optically pumped magnetometer (OPM) to judge its accuracy. Using the MCG measured by OPM as a reference, the relative errors in time and amplitude of the T wave measured by TMR are 3.4% and 1.8%, respectively. This is the first demonstration that TMR can accurately measure the time and amplitude of MCG T waves. The ability to provide reliable T wave data illustrates the significant clinical application value of TMR in MCG measurement.
Keywords:  magnetocardiography      tunnel magnetoresistance      optically pumped magnetometer      T wave detection  
Received:  01 June 2022      Revised:  22 October 2022      Accepted manuscript online:  25 November 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
Fund: Project supported by the Suzhou Tsinghua innovation leading action project (Grant No. 2016SZ0217) and the National Key Research and Development Program of China (Grant No. 2016YFB0500902).
Corresponding Authors:  Jianzhong Yang     E-mail:  yang-jz@tsinghua.edu.cn

Cite this article: 

Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中) Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor 2023 Chin. Phys. B 32 020703

[1] Mäkijärvi M, Korhonen P, Jurkko R, Väänänen H, Siltanen P, and Hänninen H 2010 Comprehensive Electrocardiology (London: Springer) pp. 2007-2028
[2] Nalbach M and Dössel O 2002 Physica C 372-376 254258
[3] Fenici R, Brisinda D and Meloni A M 2005 Expert Rev. Mol. Diagn. 5 291
[4] Jensen K, Skarsfeldt M A, Stærkind H, Arnbak J, Balabas M V, Olesen S, Bentzen B H and Polzik E S 2018 Sci. Rep. 8 16218
[5] Kim Y J, Savukov I and Newman S 2019 Appl. Phys. Lett. 114 143702
[6] Lembke G, Erné S N, Nowak H, Menhorn B and Pasquarelli A 2014 Biomed. Opt. Express 5 876
[7] Zhao W L, Tao X C, Ye C F and Tao Y 2022 Sensors 22 1021
[8] Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T, Okuno T, Aritomi Y, Morikawa M, Tsuchida M, Nakasato N and Ando Y 2018 Appl. Phys. Express 11 023001
[9] Wang M L, Wang Y, Peng L and Ye C F 2019 IEEE Sens. J. 19 1
[10] Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N and Ando Y 2021 Appl. Phys. Express 12 123002
[11] Mariyappa N, Parasakthi C, Sengottuvel S, Gireesan K, Patel R, Janawadkar M P, Sundar C S and Radhakrishnan T S 2012 Physica C 477 15
[12] Zhu K and Kiourti A 2022 IEEE Open J. Antennas Propag. 3 732
[13] Vink A S, Neumann B, Lieve K V, Sinner M F, Hofman N, Kadi E S, Schoenmaker M HA, Slaghekke H M J, de Jong J S S G, Clur S B, Blom N A, Kääb S, Wilde A A M and Postema P G 2018 Circulation 138 2345
[14] Watanabe S and Yamada S 2008 J. Arrhythmia 24 417
[15] Horigome H, Takahashi M I, Asaka M, Shigemitsu S, Kandori A and Tsukada K 2000 Acta Paediatr. 89 64
[16] Tang P T, Shenasa M and Boyle N G 2017 Card. Electrophysiol Clin. 9 693
[17] Zhang S L and Cao N 2020 Chin. Phys. B 29 040702
[18] Zhu K, Shah A M, Berkow J and Kiourti A 2021 IEEE J. Electromagn. RF Microw. Med. Biol. 5 124
[19] Zhang Y, Wolters N, Schubert J, Lomparski D, Banzet M, Panaitov G, Krause H J, Muck M and Braginski A I 2003 IEEE Trans. Appl. Supercond. 13 389
[20] Li J J, Du P C, Fu J Q, Fu J Q, Wang X T, Zhou Q and Wang R Q 2019 Chin. Phys. B 28 040703
[21] Huang N E, Shen Z, Long S, Wu M L, Shih H, Zheng Q, Yen N C, Tung C C and Liu H 1998 Proc. Math. Phys. Eng. Sci. 454 903
[22] Wu Z H and Huang N E 2009 Adv. Adapt. Data Analysis 1 141
[23] Torres M E, Colominas M, Schlotthauer G and Flandrin P 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, May 22-27, 2011, Prague, Czech Republic, p. 4144
[24] Colominas M A, Schlotthauer G and Torres M E 2014 Biomed Signal Process Control 14 19
[25] Liao Y P, He C C and Guo Q 2018 Symmetry 10 269
[26] Patrick E M, Gari D C, Lionel T and Leonard A S 2003 IEEE. Trans. Biomed. Eng. 50 289
[1] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[2] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[3] A synthetic optically pumped gradiometer for magnetocardiography measurements
Shu-Lin Zhang(张树林), Ning Cao(曹宁). Chin. Phys. B, 2020, 29(4): 040702.
[4] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[5] Observing the steady-state visual evoked potentials with a compact quad-channel spin exchange relaxation-free magnetometer
Peng-Cheng Du(杜鹏程), Jian-Jun Li(李建军), Si-Jia Yang(杨思嘉), Xu-Tong Wang(王旭桐), Yan Zhuo(卓彦), Fan Wang(王帆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040702.
[6] A dual-axis, high-sensitivity atomic magnetometer
Rujie Li(李茹杰), Wei Quan(全伟), Wenfeng Fan(范文峰), Li Xing(邢力), Zhuo Wang(王卓), Yueyang Zhai(翟跃阳), Jiancheng Fang(房建成). Chin. Phys. B, 2017, 26(12): 120702.
[7] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[8] Baseline optimization of SQUID gradiometer for magnetocardiography
Li Hua (李华), Zhang Shu-Lin (张树林), Qiu Yang (邱阳), Zhang Yong-Sheng (张永升), Zhang Chao-Xiang (张朝祥), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(2): 028501.
[9] A SQUID gradiometer module with large junction shunt resistors
Qiu Yang (邱阳), Liu Chao (刘超), Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Li Hua (李华), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2014, 23(8): 088503.
[10] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[11] Multichannel fetal magnetocardiography using SQUID bootstrap circuit
Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Liu Ming (刘明), Li Hua (李华), Qiu Yang (邱阳), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2013, 22(12): 128501.
[12] Measurements, characteristics, and origin of new electromagnetic interference on magnetocardiographic measurements
Gu Hong-Fang (谷红芳),Cai Wen-Yan (蔡文艳),Wei Yu-Ke (魏玉科),Liu Zheng-Hao (刘政豪),Wang Qian (王倩),Wang Yue (王越),Dai Yuan-Dong (戴远东),Ma Ping (马平). Chin. Phys. B, 2012, 21(4): 040702.
[13] Characteristic parameters of electromagnetic signals from a human heart system
Liu Xin-Yuan(刘新元), Pei Liu-Qing(裴留庆), Wang Yin(王寅), Zhang Su-Ming(张素明), Gao Hong-Lei(高红蕾), and Dai Yuan-Dong(戴远东) . Chin. Phys. B, 2011, 20(4): 047401.
[14] Inverse computation for cardiac sources using single current dipole and current multipole models
Wang Qian(王倩),Ma Ping(马平),Lu Hong(陆宏), Tang Xue-Zheng(唐雪正),Hua Ning(华宁), and Tang Fa-Kuan(唐发宽) . Chin. Phys. B, 2009, 18(12): 5566-5574.
[15] Singular value decomposition with normalized period for magnetocaridiography signal processing
Li Zhuo(李倬), Liu Dang-Ting(刘当婷), Tian Ye(田野), Chen Geng-Hua(陈赓华), Zhang Li-Hua(张利华), Yang Qian-Sheng(杨乾声), and Feng Ji(冯稷). Chin. Phys. B, 2007, 16(10): 2913-2917.
No Suggested Reading articles found!