Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088503    DOI: 10.1088/1674-1056/23/8/088503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A SQUID gradiometer module with large junction shunt resistors

Qiu Yang (邱阳)a b c, Liu Chao (刘超)a b, Zhang Shu-Lin (张树林)a b, Zhang Guo-Feng (张国峰)a b, Wang Yong-Liang (王永良)a b, Li Hua (李华)a b c, Zeng Jia (曾佳)a b c, Kong Xiang-Yan (孔祥燕)a b, Xie Xiao-Ming (谢晓明)a b
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China;
b Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai, Shanghai 200050, People's Republic of China and FZJ, D-52425 Julich, Germany;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on-washer integrated input coils is designed according to conventional niobium technology. In order to obtain a large SQUID flux-to-voltage transfer coefficient, the junction shunt resistance is selected to be 33 Ω. A vertical SQUID gradiometer module with a baseline of 100 mm is constructed by utilizing such a SQUID and a first-order niobium wire-wound antenna. The sensitivity of this module reaches about 0.2 fT/(cm·Hz1/2) in the white noise range using a direct readout scheme, i.e., the SQUID is directly connected to an operational amplifier, in a magnetically shielded room. Some magnetocardiography (MCG) measurements with a sufficiently high signal-to-noise ratio (SNR) are demonstrated.
Keywords:  SQUID      gradiometer      magnetocardiography  
Received:  10 February 2014      Revised:  12 March 2014      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  52.70.Ds (Electric and magnetic measurements)  
Fund: Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No.KGCX2-EW-105) and the "100 Talents Project" of the Chinese Academy of Sciences and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).
Corresponding Authors:  Kong Xiang-Yan     E-mail:  xykong@mail.sim.ac.cn

Cite this article: 

Qiu Yang (邱阳), Liu Chao (刘超), Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Li Hua (李华), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明) A SQUID gradiometer module with large junction shunt resistors 2014 Chin. Phys. B 23 088503

[1] Cohen D, Edelsack E A and Zimmerman J E 1970 Appl. Phys. Lett. 16 278
[2] Zimmerman J E and Frederick N V 1971 Appl. Phys. Lett. 19 16
[3] Drung D 1995 IEEE Trans. Appl. Supercond. 5 2112
[4] Zhang G F, Zhang Y, Zhang S L, Krause H J, Wang Y L, Liu C, Zeng J, Qiu Y, Kong X Y, Dong H, Xie X M, Offenhausser A and Jiang M H 2012 Physica C 480 10
[5] Liu C, Zhang Y, Mück M, Krause H J, Braginski A I, Xie X M, Offenhäusser A and Jiang M H 2012 Appl. Phys. Lett. 101 222602
[6] Drung D, Cantor R, Peters M, Scheer H J and Koch H 1990 Appl. Phys. Lett. 57 406
[7] Kiviranta M and Seppa H 1995 IEEE Trans. Appl. Supercond. 5 2146
[8] Xie X M, Zhang Y, Wang H W, Wang Y L, Mück M, Dong H, Krause H J, Braginski A I, Offenhäusser A and Jiang M H 2010 Supercond. Sci. Technol. 23 065016
[9] Knuutila J, Ahonen A and Tesche C 1987 J. Low Temp. Phys. 68 269
[10] Chesca B, Kleiner R and Koelle D 2004 "SQUID Theory", The SQUID Handbook, Vol. I, ed. Clarke J and Braginski A I (Weinheim: Wiley-VCH) pp. 46-70
[11] Zeng J, Zhang Y, Mück M, Krause H J, Braginski A I, Kong X Y, Xie X M, Offenhäusser A and Jiang M H 2013 Appl. Phys. Lett. 103 042601
[12] Zhang S L, Zhang G F, Wang Y L, Liu M, Li H, Qiu Y, Zeng J, Kong X Y and Xie X M 2013 Chin. Phys. B 22 128501
[1] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[2] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[3] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[4] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[5] A synthetic optically pumped gradiometer for magnetocardiography measurements
Shu-Lin Zhang(张树林), Ning Cao(曹宁). Chin. Phys. B, 2020, 29(4): 040702.
[6] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[7] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[8] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[11] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[12] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[13] Retrieval of original signals for superconducting quantum interference device operating in flux locked mode
Liu Dang-Ting (刘当婷), Tian Ye (田野), Zhao Shi-Ping (赵士平), Ren Yu-Feng (任育峰), Chen Geng-Hua (陈赓华). Chin. Phys. B, 2015, 24(4): 047402.
[14] Baseline optimization of SQUID gradiometer for magnetocardiography
Li Hua (李华), Zhang Shu-Lin (张树林), Qiu Yang (邱阳), Zhang Yong-Sheng (张永升), Zhang Chao-Xiang (张朝祥), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(2): 028501.
[15] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
No Suggested Reading articles found!