|
|
Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping |
Chao-Zhong Wang(王朝中)1, Lei Liu(刘雷)1,2,†, Ying-Li Sun(孙颖莉)1,2, Jiang-Tao Zhao(赵江涛)1, Bo Zhou (周波)1, Si-Si Tu(涂思思)1, Chun-Guo Wang(王春国)1, Yong Ding(丁勇)1,‡, and A-Ru Yan(闫阿儒)1,2 |
1 CISRI&NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The effects of Nd doping on the microstructures and magnetic properties of Sm$_{1-x}$Nd$_{x}$ (Co$_{0.695}$Fe$_{0.2}$Cu$_{0.08}$Zr$_{0.025}$)$_{7.2}$ ($x=0$, 0.3, 0.5, 0.7, 1.0) permanent magnets are studied. The scanning electron microscope (SEM) analysis of the solid solution states of the magnets shows that with the increase of Nd content, the distribution of elements becomes inhomogeneous and miscellaneous phase will be generated. Positive temperature coefficient of coercivity ($\beta $) appears in each of the samples with $x=0.3$, 0.5, and 0.7. The corresponding positive $\beta $ temperatures are in ranges of about 70 K-170 K, 60 K-260 K, 182 K-490 K for the samples with $x=0.3$, 0.5, and 0.7, respectively. Thermomagnetic analysis shows that spin-reorientation-transition (SRT) of the cell boundary phase is responsible for this phenomenon. On the basis of this discovery, the Sm$_{0.7}$Nd$_{0.3}$ (Co$_{0.695}$Fe$_{0.2}$Cu$_{0.08}$Zr$_{0.025}$)$_{7.2}$ magnet possessing thermal stability with $\beta \approx -0.002 $ %/K at the temperature in a range of 150 K-200 K is obtained.
|
Received: 18 March 2022
Revised: 11 May 2022
Accepted manuscript online: 18 May 2022
|
PACS:
|
07.55.-w
|
(Magnetic instruments and components)
|
|
75.50.Vv
|
(High coercivity materials)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFB3803003 and 2021YFB3503101), the Major Project of “Science and Technology Innovation 2025” in Ningbo, China (Grant No. 2020Z044), the Zhejiang Provincial Key Research and Development Program, China (Grant No. 2021C01172), and the National Natural Science Funds of China (Grant No. 51601209). |
Corresponding Authors:
Lei Liu, Yong Ding
E-mail: liulei@nimte.ac.cn;dingyong@nimte.ac.cn
|
Cite this article:
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒) Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping 2023 Chin. Phys. B 32 020704
|
[1] Wu H, Zhang C, Liu Z, Wang G, Lu H, Chen G, Li Y, Chen R and Yan A 2020 Acta Materialia 200 883 [2] Mishra R K, Thomas G, Yoneyama T, Fukuno A and Ojima T 1981 J. Appl. Phys. 52 2517 [3] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Kobayashi T, Sanada N and Sakurada S 2014 Mater. Trans. 55 482 [4] Liu J P, Fullerton E, Gutfleisch O and Sellmyer D J 2009 Nanoscale Magnetic Materials and Applications [5] Plugaru N, Rubín J and Bartolomé J 2007 J. Alloys Compd. 433 129 [6] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Materialia 54 997 [7] Zhang C, Liu Z, Li M, Liu L, Li T, Chen R, Lee D and Yan A 2018 Sci. Rep. 8 [8] Gjoka M, Panagiotopoulos I, Niarchos D, Matthias T and Fidler J 2004 J. Alloys Compd. 367 262 [9] Liu Z, Liu L, Chen R J, Sun Y L, Lee D and Yan A R 2013 IEEE Trans. Magn. 49 5599 [10] Wang J, Chen R, Rong C, Liu Z, Zhang H, Shen B and Yan A 2010 J. Appl. Phys. 107 09A707 [11] Liu L, Liu Z, Zhang X, Zhang C, Li T, Lee D and Yan A 2019 J. Magn. Magn. Mater. 473 376 [12] Liu J F, Zhang Y and Hadjipanayis G C 1999 J. Magn. Magn. Mater. 202 69 [13] Liu J F, Chui T, Dimitrov D and Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007 [14] Goll D, Kleinschroth I, Sigle W and Kronmüller H 2000 Appl. Phys. Lett. 76 1054 [15] Liu S, Yang J, Doyle G, Potts G and Kuhl G E 2000 J. Appl. Phys. 87 6728 [16] Zhao T S, Jin H M, Guo G H, Han X F and Chen H 1991 Phys. Rev. B 43 8593 [17] Liu L, Liu Z, Li M, Lee D, Chen R J, Liu J, Li W and Yan A R 2015 Appl. Phys. Lett. 106 052408 [18] Zuo S, Liu J, Qiao K, Zhang Y, Chen J, Su N, Liu Y, Cao J, Zhao T, Wang J, Hu F, Sun J, Jiang C and Shen B 2021 Adv. Mater. 33 2103751 [19] Kumar S, Patrick C E, Edwards R S, Balakrishnan G, Lees M R and Staunton J B 2020 Appl. Phys. Lett. 116 102408 [20] Seifert M, Schultz L, Schäfer R, Neu V, Hankemeier S, Rossler S, Fromter R and Oepen H P 2013 New J. Phys. 15 013019 [21] Li E X, Jailin L and Yuxian D 1980 IEEE Trans. Magn. 16 988 [22] Changguo J J Y, Weihua M, Yingchang Y, Wei L and Xiaojun Y 1998 Solid State Commun. 108 667 [23] Liu S, Ray A E and Mildrum H F 1990 J. Appl. Phys. 67 4975 [24] Luo C, Fu Y, Zhang D, Yuan S, Zhai Y, Dong S and Zhai H 2015 J. Magn. Magn. Mater. 374 711 [25] Koo J 1984 IEEE Trans. Magn. 20 1593 [26] Liu S A E R, Chen C H and Mildrum H F 1991 J. Appl. Phys. 69 5853 [27] Willman C J K S V L N 1985 IEEE Trans. Magn. 21 1976 [28] Yuan T, Song X, Zhou X, Jia W, Musa M, Wang J and Ma T 2020 J. Mater. Sci. Technol. 53 73 [29] Wang S, Fang Y, Song K, Zhu X, Wang L, Sun W, Pan W, Zhu M and Li W 2020 Journal of Rare Earths 38 1224 [30] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Kobayashi T, Nakamura T and Sakurada S 2013 IEEE Trans. Magn. 49 3221 [31] Lee R W 1979 IEEE Trans. Magn. 15 1762 [32] Xia W, Zhang T, Liu J, Dong Y, Wang H and Jiang C 2021 J. Magn. Magn. Mater. 528 167763 [33] Chaudhary V, Zhong Y, Parmar H, Tan X and Ramanujan R V 2018 Chemphyschem 19 2370 [34] Kronmüller H and Goll D 2003 Scripta Materialia 48 833 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|