Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128501    DOI: 10.1088/1674-1056/22/12/128501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multichannel fetal magnetocardiography using SQUID bootstrap circuit

Zhang Shu-Lin (张树林)a b, Zhang Guo-Feng (张国峰)a b, Wang Yong-Liang (王永良)a b, Liu Ming (刘明)a b, Li Hua (李华)a b c, Qiu Yang (邱阳)a b c, Zeng Jia (曾佳)a b c, Kong Xiang-Yan (孔祥燕)a b, Xie Xiao-Ming (谢晓明)a b
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China;
b Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration Between CAS–Shanghai and FZJ, Shanghai 200050, China;
c University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Fetal magnetocardiography (MCG) is a sophisticated non-invasive technique for the fetal heart diagnosis. We constructed a multichannel fetal MCG system based on a novel superconducting quantum interference device (SQUID) direct readout scheme called SQUID bootstrap circuit (SBC). The system incorporates four SBC gradiometers for the signal detection and three SBC magnetometers as the references. The fetal MCG signal at a 28-weeks’ gestation was measured. By the fetal MCG signal separation and average, the P-wave and QRS complex can be clearly identified. These results indicate that the SBC is one of the most promising techniques for the fetal MCG recordings.
Keywords:  SQUID      gradiometer      fetal magnetocardiography  
Received:  23 May 2013      Revised:  11 July 2013      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  52.70.Ds (Electric and magnetic measurements)  
Fund: Projects supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. KGCX2-EW-105), the "100 Talents Project" of the Chinese Academy of Sciences and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020300).
Corresponding Authors:  Zhang Shu-Lin, Kong Xiang-Yan     E-mail:  zhangsl@mail.sim.ac.cn;xykong@mail.sim.ac.cn

Cite this article: 

Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Liu Ming (刘明), Li Hua (李华), Qiu Yang (邱阳), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明) Multichannel fetal magnetocardiography using SQUID bootstrap circuit 2013 Chin. Phys. B 22 128501

[1] Kariniemi V, Ahopelto J, Karp P J and Katila T E 1974 J. Perinat. Med. 2 214
[2] van Leeuwen P, Hailer B, Bader W, Geissler J, Trowitzsch E and Grönemeyer D H 1999 Br. J. Obstet. Gynaecol. 106 1200
[3] Kähler C, Grimm B, Schleussner E, Schneider A, Schneider U, Nowak H, Vogt L and Seewald H J 2001 Prenat. Diagn. 21 176
[4] Janette F S, Bageshree C and Ronald T W 2008 Heart Rhythm 5 1073
[5] Drung D, Cantor R, Peters M, Scheer H J and Koch H 1990 Appl. Phys. Lett. 57 406
[6] Kiviranta M and Seppä H 1995 IEEE Trans. Appl. Supercond. 5 2146
[7] Lee Y H, Kim J M, Kim K, Kwon H, Yu K K, Kim I S and Park Y K 2006 Supercond. Sci. Technol. 19 S284
[8] Xie X M, Zhang Y, Wang H W, Wang Y L, Mück M, Dong H, Krause H J, Braginski A I, Offenhäusser A and Jiang M H 2010 Supercond. Sci. Technol. 23 065016
[9] Pizzella V, Penna S D, Gratta C D and Romani G L 2001 Supercond. Sci. Technol. 14 R79
[10] Zhang G F, Zhang Y, Dong H, Krause H J, Xie X M, Braginski A I, Offenhäusser A and Jiang M H 2012 Supercond. Sci. Technol. 25 015006
[11] Zhang G F, Zhang Y, Zhang S L, Krause H J, Wang Y L, Liu C, Zeng J, Qiu Y, Kong X Y, Dong H, Xie X M, Offenhäusser A and JiangM H 2012 Physica C 480 10
[12] Zhang S L, Wang Y L, Wang H W, Jiang S Q and Xie X M 2009 Phys. Med. Biol. 54 4793
[13] Liu D T, Tian Y, Ren Y F, Yu H W, Zhang L H, Yang Q S and Chen G H 2008 Chin. Phys. Lett. 25 2714
[14] Li Z, Chen G H, Zhang L H, Yang Q S and Feng J 2005 Chin. Phys. 14 1095
[15] Hyvärinen A and Oja E 1997 Neural Computation 9 1483
[16] Comani S, Mantini D, Alleva G, Luzio S D and Romani G L 2004 Physiol. Meas. 25 1459
[17] Zhang Y, Wolters N, Lormparski D, Zander W, Banzet M, Schubert J, Krause H J, Geue D and van Leeuwen P 2006 Supercond. Sci. Technol. 19 S266
[18] Zhang S L, Liu M, Zeng J, Wang Y L, Kong X Y and Xie X M 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI 2012), January 5–7, 2012, Hong Kong, China, p. 253
[1] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[2] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[3] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[4] A synthetic optically pumped gradiometer for magnetocardiography measurements
Shu-Lin Zhang(张树林), Ning Cao(曹宁). Chin. Phys. B, 2020, 29(4): 040702.
[5] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[6] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[7] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[8] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[9] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[10] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[11] Retrieval of original signals for superconducting quantum interference device operating in flux locked mode
Liu Dang-Ting (刘当婷), Tian Ye (田野), Zhao Shi-Ping (赵士平), Ren Yu-Feng (任育峰), Chen Geng-Hua (陈赓华). Chin. Phys. B, 2015, 24(4): 047402.
[12] Baseline optimization of SQUID gradiometer for magnetocardiography
Li Hua (李华), Zhang Shu-Lin (张树林), Qiu Yang (邱阳), Zhang Yong-Sheng (张永升), Zhang Chao-Xiang (张朝祥), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(2): 028501.
[13] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[14] A SQUID gradiometer module with large junction shunt resistors
Qiu Yang (邱阳), Liu Chao (刘超), Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Li Hua (李华), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2014, 23(8): 088503.
[15] Superconducting quantum interference devices with different damped junctions operated in directly coupled current- and voltage-bias modes
Zeng Jia (曾佳), Zhang Yi (张懿), Qiu Yang (邱阳), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2014, 23(11): 118501.
No Suggested Reading articles found!