Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017901    DOI: 10.1088/1674-1056/ac8e9b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2

Siwen You(游思雯)1, Ziyi Shao(邵子依)1, Xiao Guo(郭晓)1, Junjie Jiang(蒋俊杰)1, Jinxin Liu(刘金鑫)1, Kai Wang(王凯)1, Mingjun Li(李明君)1, Fangping Ouyang(欧阳方平)1, Chuyun Deng(邓楚芸)2, Fei Song(宋飞)3, Jiatao Sun(孙家涛)4, and Han Huang(黄寒)1,†
1 Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 College of Arts and Science, National University of Defense Technology, Changsha 410073, China;
3 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201000, China;
4 School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
Abstract  Hybrid organic-inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm scale usually show special properties. Here, we report on the growth of methylammonium lead iodide (MAPbI3) ultrathin films via co-deposition of PbI2 and CH3NH3I (MAI) on chemical-vapor-deposition-grown monolayer MoS2 as well as the corresponding photoluminescence (PL) properties at different growing stages. Atomic force microscopy and scanning electron microscopy measurements reveal the MoS2 tuned growth of MAPbI3 in a Stranski-Krastanov mode. PL and Kelvin probe force microscopy results confirm that MAPbI3/MoS2 heterostructures have a type-II energy level alignment at the interface. Temperaturedependent PL measurements on layered MAPbI3 (at the initial stage) and on MAPbI3 crystals in averaged size of 500 nm (at the later stage) show rather different temperature dependence as well as the phase transitions from tetragonal to orthorhombic at 120 and 150 K, respectively. Our findings are useful in fabricating MAPbI3/transition-metal dichalcogenide based innovative devices for wider optoelectronic applications.
Keywords:  MAPbI3/MoS2 heterostructure      Co-deposition      temperature-dependent photoluminescence      growth behavior  
Received:  24 June 2022      Revised:  15 August 2022      Accepted manuscript online:  02 September 2022
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  63.20.kd (Phonon-electron interactions)  
  78.55.-m (Photoluminescence, properties and materials)  
  64.70.Nd (Structural transitions in nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874427 and 11804395) and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2020zzts377).
Corresponding Authors:  Han Huang     E-mail:  physhh@csu.edu.cn

Cite this article: 

Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒) Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2 2023 Chin. Phys. B 32 017901

[1] Dou L, Wong Andrew B, Yu Y, Lai M, Kornienko N, Eaton Samuel W, Fu A, Bischak Connor G, Ma J, Ding T, Ginsberg Naomi S, Wang L-W, Alivisatos A P and Yang P 2015 Science 349 1518
[2] Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F and Huang J 2019 Science 365 473
[3] Zhong Y, Liao K, Du W, Zhu J, Shang Q, Zhou F, Wu X, Sui X, Shi J, Yue S, Wang Q, Zhang Y, Zhang Q, Hu X and Liu X 2020 ACS Nano 14 15605
[4] Dong J, Xu X, Shi J J, Li D M, Luo Y H, Meng Q B and Chen Q 2015 Chin. Phys. Lett. 32 078401
[5] Du X, Chen S, Lin D X, Xie F Y, Chen J, Xie W G and Liu P Y 2018 Acta Phys. Sin. 67 098801 (in Chinese)
[6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[7] Stranks Samuel D, Eperon Giles E, Grancini G, Menelaou C, Alcocer Marcelo J P, Leijtens T, Herz Laura M, Petrozza A and Snaith Henry J 2013 Science 342 341
[8] Sun X G, Shi Z F, Li Y, Lei L Z, Li S, Wu D, Xu T T, Tian Y T and Li X J 2017 J. Alloys Compd. 706 274
[9] Wu K, Bera A, Ma C, Du Y, Yang Y, Li L and Wu T 2014 Phys. Chem. Chem. Phys. 16 22476
[10] Even J, Pedesseau L and Katan C 2014 J. Phys. Chem. C 118 11566
[11] Wehrenfennig C, Liu M, Snaith H J, Johnston M B and Herz L M 2014 J. Phys. Chem. Lett. 5 1300
[12] Rubino A, Francisco-Lopez A, Barker A J, Petrozza A, Calvo M E, Goni A R and Miguez H 2021 J. Phys. Chem. Lett. 12 569
[13] Mirzehmet A, Ohtsuka T, Abd Rahman S A, Yuyama T, Kruger P and Yoshida H 2021 Adv. Mater. 33 2004981
[14] Rubino A, Anaya M, Galisteo-López J F, Rojas T C, Calvo M E and Míguez H 2018 ACS Appl. Mater. Interfaces 10 38334
[15] Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y and Bao Q 2016 ACS Nano 10 3536
[16] Tang G, You P, Tai Q, Yang A, Cao J, Zheng F, Zhou Z, Zhao J, Chan P K L and Yan F 2019 Adv. Mater. 31 1807689
[17] Liu Z, Liu K, Zhang F, Jain S M, He T, Jiang Y, Liu P, Yang J, Liu H and Yuan M 2020 Sol. Energy 195 436
[18] Li Z, Li J, Ding D, Yao H, Liu L, Gong X, Tian B, Li H, Su C and Shi Y 2018 ACS Appl. Mater. Interfaces 10 36493
[19] Yu Y, Miao F, He J and Ni Z 2017 Chin. Phys. B 26 036801
[20] Yang T, Wang X, Zheng B, et al. 2019 ACS Nano 13 7996
[21] Shao Z, Xiao J, Guo X, You S, Zhang Y, Li M, Song F, Zhou C, Xie H, Gao Y, Sun J and Huang H 2022 Curr. Appl. Phys. 36 27
[22] Shao Z, You S, Guo X, Xiao J, Liu J, Song F, Xie H, Sun J and Huang H 2022 Results Phys. 34 105326
[23] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[24] Ono L K, Wang S, Kato Y, Raga S R and Qi Y 2014 Energy Environ. Sci. 7 3989
[25] Liu S and MandHan W Z 2019 Acta Phys. Sin. 68 137901 (in Chinese)
[26] Shi J, Wu D, Zheng X, Xie D, Song F, Zhang X, Jiang J, Yuan X, Gao Y and Huang H 2018 Phys. Status Solidi B 255 1800254
[27] Deng R, Zhang H, Zhang Y, Chen Z, Sui Y, Ge X, Liang Y, Hu S, Yu G and Jiang D 2017 Chin. Phys. B 26 067901
[28] Tian Q, He B, Zhao Y, Wang S, Xiao J, Song F, Wang Y, Lu Y, Xie H, Huang H and Gao Y 2019 Synth. Met. 251 24
[29] Wu D, Yang Y, Zhu P, Zheng X, Chen X, Shi J, Song F, Gao X, Zhang X, Ouyang F, Xiong X, Gao Y and Huang H 2018 J. Phys. Chem. C 122 1860
[30] Liu J, Sun K, Zheng X, Wang S, Lian S, Deng C, Xie H, Zhang X, Gao Y, Song F and Huang H 2020 Results Phys. 19 103634
[31] Guo X, Tian Q, Wang Y, Liu J, Jia G, Dou W, Song F, Zhang L, Qin Z and Huang H 2022 Carbon 190 312
[32] Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta I Morral A, Radenovic A and Kis A 2015 ACS Nano 9 4611
[33] Gidey A T, Assayehegn E and Kim J Y 2021 ACS Appl. Energy Mater. 4 6923
[34] Li Y, Xu X, Wang C, Wang C, Xie F, Yang J and Gao Y 2015 AIP Adv. 5 097111
[35] Zhang K, Zhang T, Cheng G, et al. 2016 ACS Nano 10 3852
[36] Gallet T, Poeira R G, Lanzoni E M, Abzieher T, Paetzold U W and Redinger A 2021 ACS. Appl. Mater. Interfaces 13 2642
[37] Taurisano N, Bravetti G, Carallo S, Liang M, Ronan O, Spurling D, Coelho J, Nicolosi V, Colella S, Gigli G, Listorti A and Rizzo A 2021 Nanomaterials 11 1706
[38] Sun Y, Yin Y, Pols M, et al. 2020 Adv. Mater. 32 2002392
[39] Kronik LandKummel S 2018 Adv. Mater. 30 1706560
[40] Niu L, Liu X, Cong C, et al. 2015 Adv. Mater. 27 7800
[41] Shi Z F, Li Y, Li S, Ji H F, Lei L Z, Wu D, Xu T T, Xu J M, Tian Y T and Li X J 2017 J. Mater. Chem. C 5 8699
[42] Leguy A M, Goni A R, Frost J M, Skelton J, Brivio F, Rodriguez-Martinez X, Weber O J, Pallipurath A, Alonso M I, Campoy-Quiles M, Weller M T, Nelson J, Walsh A and Barnes P R 2016 Phys. Chem. Chem. Phys. 18 27051
[43] Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J and Zhu X Y 2015 J. Am. Chem. Soc. 137 2089
[44] O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924
[45] Francisco-López A, Charles B, Alonso M I, Garriga M, Campoy-Quiles M, Weller M T and Goñi A R 2020 J. Phys. Chem. C 124 3448
[46] Francisco-Lopez A, Charles B, Weber O J, Alonso M I, Garriga M, Campoy-Quiles M, Weller M T and Goni A R 2019 J. Phys. Chem. Lett. 10 2971
[47] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019
[48] Ghosh D, Walsh Atkins P, Islam M S, Walker A B and Eames C 2017 ACS Energy Lett. 2 2424
[49] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218
[50] Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A and Angelis F D 2014 J. Phys. Chem. Lett. 5 279
[1] Thin-film growth behavior of non-planar vanadium oxide phthalocyanine
Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2019, 28(8): 088101.
[2] Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots
Qi Ding(丁琪), Xiao-Song Zhang(张晓松), Lan Li(李岚), Jian-Ping Xu(徐建萍), Ping Zhou(周平), Xiao-Fei Dong(董晓菲), Ming Yan(晏明). Chin. Phys. B, 2017, 26(6): 067804.
[3] Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同). Chin. Phys. B, 2017, 26(1): 017802.
[4] Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals
Liu Xiao-Juan (刘晓娟), Zhang Xiao-Song (张晓松), Li Lan (李岚), Wang Xue-Liang (王雪亮), Yuan Lin-Lin (苑琳琳). Chin. Phys. B, 2014, 23(11): 117804.
No Suggested Reading articles found!