CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2 |
Siwen You(游思雯)1, Ziyi Shao(邵子依)1, Xiao Guo(郭晓)1, Junjie Jiang(蒋俊杰)1, Jinxin Liu(刘金鑫)1, Kai Wang(王凯)1, Mingjun Li(李明君)1, Fangping Ouyang(欧阳方平)1, Chuyun Deng(邓楚芸)2, Fei Song(宋飞)3, Jiatao Sun(孙家涛)4, and Han Huang(黄寒)1,† |
1 Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China; 2 College of Arts and Science, National University of Defense Technology, Changsha 410073, China; 3 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201000, China; 4 School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Hybrid organic-inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm scale usually show special properties. Here, we report on the growth of methylammonium lead iodide (MAPbI3) ultrathin films via co-deposition of PbI2 and CH3NH3I (MAI) on chemical-vapor-deposition-grown monolayer MoS2 as well as the corresponding photoluminescence (PL) properties at different growing stages. Atomic force microscopy and scanning electron microscopy measurements reveal the MoS2 tuned growth of MAPbI3 in a Stranski-Krastanov mode. PL and Kelvin probe force microscopy results confirm that MAPbI3/MoS2 heterostructures have a type-II energy level alignment at the interface. Temperaturedependent PL measurements on layered MAPbI3 (at the initial stage) and on MAPbI3 crystals in averaged size of 500 nm (at the later stage) show rather different temperature dependence as well as the phase transitions from tetragonal to orthorhombic at 120 and 150 K, respectively. Our findings are useful in fabricating MAPbI3/transition-metal dichalcogenide based innovative devices for wider optoelectronic applications.
|
Received: 24 June 2022
Revised: 15 August 2022
Accepted manuscript online: 02 September 2022
|
PACS:
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874427 and 11804395) and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2020zzts377). |
Corresponding Authors:
Han Huang
E-mail: physhh@csu.edu.cn
|
Cite this article:
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒) Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2 2023 Chin. Phys. B 32 017901
|
[1] Dou L, Wong Andrew B, Yu Y, Lai M, Kornienko N, Eaton Samuel W, Fu A, Bischak Connor G, Ma J, Ding T, Ginsberg Naomi S, Wang L-W, Alivisatos A P and Yang P 2015 Science 349 1518 [2] Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F and Huang J 2019 Science 365 473 [3] Zhong Y, Liao K, Du W, Zhu J, Shang Q, Zhou F, Wu X, Sui X, Shi J, Yue S, Wang Q, Zhang Y, Zhang Q, Hu X and Liu X 2020 ACS Nano 14 15605 [4] Dong J, Xu X, Shi J J, Li D M, Luo Y H, Meng Q B and Chen Q 2015 Chin. Phys. Lett. 32 078401 [5] Du X, Chen S, Lin D X, Xie F Y, Chen J, Xie W G and Liu P Y 2018 Acta Phys. Sin. 67 098801 (in Chinese) [6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [7] Stranks Samuel D, Eperon Giles E, Grancini G, Menelaou C, Alcocer Marcelo J P, Leijtens T, Herz Laura M, Petrozza A and Snaith Henry J 2013 Science 342 341 [8] Sun X G, Shi Z F, Li Y, Lei L Z, Li S, Wu D, Xu T T, Tian Y T and Li X J 2017 J. Alloys Compd. 706 274 [9] Wu K, Bera A, Ma C, Du Y, Yang Y, Li L and Wu T 2014 Phys. Chem. Chem. Phys. 16 22476 [10] Even J, Pedesseau L and Katan C 2014 J. Phys. Chem. C 118 11566 [11] Wehrenfennig C, Liu M, Snaith H J, Johnston M B and Herz L M 2014 J. Phys. Chem. Lett. 5 1300 [12] Rubino A, Francisco-Lopez A, Barker A J, Petrozza A, Calvo M E, Goni A R and Miguez H 2021 J. Phys. Chem. Lett. 12 569 [13] Mirzehmet A, Ohtsuka T, Abd Rahman S A, Yuyama T, Kruger P and Yoshida H 2021 Adv. Mater. 33 2004981 [14] Rubino A, Anaya M, Galisteo-López J F, Rojas T C, Calvo M E and Míguez H 2018 ACS Appl. Mater. Interfaces 10 38334 [15] Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y and Bao Q 2016 ACS Nano 10 3536 [16] Tang G, You P, Tai Q, Yang A, Cao J, Zheng F, Zhou Z, Zhao J, Chan P K L and Yan F 2019 Adv. Mater. 31 1807689 [17] Liu Z, Liu K, Zhang F, Jain S M, He T, Jiang Y, Liu P, Yang J, Liu H and Yuan M 2020 Sol. Energy 195 436 [18] Li Z, Li J, Ding D, Yao H, Liu L, Gong X, Tian B, Li H, Su C and Shi Y 2018 ACS Appl. Mater. Interfaces 10 36493 [19] Yu Y, Miao F, He J and Ni Z 2017 Chin. Phys. B 26 036801 [20] Yang T, Wang X, Zheng B, et al. 2019 ACS Nano 13 7996 [21] Shao Z, Xiao J, Guo X, You S, Zhang Y, Li M, Song F, Zhou C, Xie H, Gao Y, Sun J and Huang H 2022 Curr. Appl. Phys. 36 27 [22] Shao Z, You S, Guo X, Xiao J, Liu J, Song F, Xie H, Sun J and Huang H 2022 Results Phys. 34 105326 [23] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395 [24] Ono L K, Wang S, Kato Y, Raga S R and Qi Y 2014 Energy Environ. Sci. 7 3989 [25] Liu S and MandHan W Z 2019 Acta Phys. Sin. 68 137901 (in Chinese) [26] Shi J, Wu D, Zheng X, Xie D, Song F, Zhang X, Jiang J, Yuan X, Gao Y and Huang H 2018 Phys. Status Solidi B 255 1800254 [27] Deng R, Zhang H, Zhang Y, Chen Z, Sui Y, Ge X, Liang Y, Hu S, Yu G and Jiang D 2017 Chin. Phys. B 26 067901 [28] Tian Q, He B, Zhao Y, Wang S, Xiao J, Song F, Wang Y, Lu Y, Xie H, Huang H and Gao Y 2019 Synth. Met. 251 24 [29] Wu D, Yang Y, Zhu P, Zheng X, Chen X, Shi J, Song F, Gao X, Zhang X, Ouyang F, Xiong X, Gao Y and Huang H 2018 J. Phys. Chem. C 122 1860 [30] Liu J, Sun K, Zheng X, Wang S, Lian S, Deng C, Xie H, Zhang X, Gao Y, Song F and Huang H 2020 Results Phys. 19 103634 [31] Guo X, Tian Q, Wang Y, Liu J, Jia G, Dou W, Song F, Zhang L, Qin Z and Huang H 2022 Carbon 190 312 [32] Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta I Morral A, Radenovic A and Kis A 2015 ACS Nano 9 4611 [33] Gidey A T, Assayehegn E and Kim J Y 2021 ACS Appl. Energy Mater. 4 6923 [34] Li Y, Xu X, Wang C, Wang C, Xie F, Yang J and Gao Y 2015 AIP Adv. 5 097111 [35] Zhang K, Zhang T, Cheng G, et al. 2016 ACS Nano 10 3852 [36] Gallet T, Poeira R G, Lanzoni E M, Abzieher T, Paetzold U W and Redinger A 2021 ACS. Appl. Mater. Interfaces 13 2642 [37] Taurisano N, Bravetti G, Carallo S, Liang M, Ronan O, Spurling D, Coelho J, Nicolosi V, Colella S, Gigli G, Listorti A and Rizzo A 2021 Nanomaterials 11 1706 [38] Sun Y, Yin Y, Pols M, et al. 2020 Adv. Mater. 32 2002392 [39] Kronik LandKummel S 2018 Adv. Mater. 30 1706560 [40] Niu L, Liu X, Cong C, et al. 2015 Adv. Mater. 27 7800 [41] Shi Z F, Li Y, Li S, Ji H F, Lei L Z, Wu D, Xu T T, Xu J M, Tian Y T and Li X J 2017 J. Mater. Chem. C 5 8699 [42] Leguy A M, Goni A R, Frost J M, Skelton J, Brivio F, Rodriguez-Martinez X, Weber O J, Pallipurath A, Alonso M I, Campoy-Quiles M, Weller M T, Nelson J, Walsh A and Barnes P R 2016 Phys. Chem. Chem. Phys. 18 27051 [43] Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J and Zhu X Y 2015 J. Am. Chem. Soc. 137 2089 [44] O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924 [45] Francisco-López A, Charles B, Alonso M I, Garriga M, Campoy-Quiles M, Weller M T and Goñi A R 2020 J. Phys. Chem. C 124 3448 [46] Francisco-Lopez A, Charles B, Weber O J, Alonso M I, Garriga M, Campoy-Quiles M, Weller M T and Goni A R 2019 J. Phys. Chem. Lett. 10 2971 [47] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019 [48] Ghosh D, Walsh Atkins P, Islam M S, Walker A B and Eames C 2017 ACS Energy Lett. 2 2424 [49] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218 [50] Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A and Angelis F D 2014 J. Phys. Chem. Lett. 5 279 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|