Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064207    DOI: 10.1088/1674-1056/ac3733
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN

Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章)
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  We investigated Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts of a reflective beam on a twisted bilayer of hexagonal boron nitride (hBN), where a left circularly polarized beam was incident on the surface. Our results demonstrate that the twist angle between the two optical axes plays an important role in obtaining large shifts with a high reflectivity. The GH shift with 10λ0 is achieved, while the reflectivity is near 100% by tuning the twist angle. The maximum of the IF shift is found in the certain condition satisfied by the reflective coefficients, and the shift strongly depends on the twist angle between the optical axes of the two slabs. The spatial shifts obtained directly from the GH and IF shift definitions were provided, which indicate that the theoretical results from the stationary phase method are believable. These results may open up a new way for developing the nano-optical devices.
Keywords:  Goos-Hänchen shift      Imbert-Fedorov shift      hBN      reststrahlen band  
Received:  06 August 2021      Revised:  18 October 2021      Accepted manuscript online:  06 November 2021
PACS:  42.65.-k (Nonlinear optics)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2020A014), Harbin Normal University Fund (Grant No. HSDSSCX2021-27), and Education Commission of Heilongjiang Province, China (Grant No. 2020-KYYWF352).
Corresponding Authors:  Shu-Fang Fu     E-mail:  shufangfu1975@163.com

Cite this article: 

Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章) Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN 2022 Chin. Phys. B 31 064207

[1] Goos F and Hänchen H 1947 Ann. Phys. 436 333
[2] Goos F and Hänchen H 1949 Ann. Phys. 5 251
[3] Fedorov F I 1955 Dokl. Akad. Nauk SSSR 105 465
[4] Wang L G and Zhu S Y 2010 Appl. Phys. B 98 459
[5] Chen L, Cao Z Q, Zhang D W, Zhu Y M and Zhuang S L 2009 Proceedings of SPIE-The International Society for Optical Engineering 7279 15
[6] Piper J R and Fan S H 2014 ACS Photon. 1 347
[7] Abergel D S L, Apalkov V, Berashevich J, Zieg L K and Chakraborty T 2010 Adv. Phys. 59 261
[8] Hosten O and Kwiat P 2008 Science 319 787
[9] Wang, Li G and Zhu S Y 2005 J. Appl. Phys. 98 043552
[10] Ziauddin, Chuang Y L, Sajid Q and Lee R K 2016 Sci. Rep. 6 26504
[11] Huang Y Y, Zhao B and Gao L 2012 J. Opt. Soc. Am. A 29 1436
[12] Madani A and Entezar S R 2015 Superlattices and Microstructures 86 105
[13] Low T, Rodin A, Carvalho A, Jiang Y, Wang H, Xia F and Neto A C 2014 Phys. Rev. B 90 075434
[14] Li X, Wang P, Xing F, Chen X D, Liu Z B, Tian J G 2014 Opt. Lett. 39 5574
[15] Song H Y, Fu S F, Zhang Q, Zhou S and Wang X Z 2021 Opt. Express 29 19068
[16] Fu S F, Zhou S, Zhang Q and Zhang W X 2020 Opt. Laser Technol. 125 106012
[17] Wang X G, Zhang Y Q, Zhou S, Fu S F and Wang X Z 2020 Opt. Express 28 25048
[18] Wu X H, Fu C J and Zhang Z M 2019 Opt. Commun. 452 124
[19] Wu X H 2018 Opt. Commun. 416 181
[20] Zhou S, Abdullah K, Fu S F and Wang X Z 2019 Opt. Express 27 15222
[21] Zhang Y Q, Wang X G, Zhang D Z, Fu S F, Zhou S and Wang X Z 2020 Opt. Express 28 19205
[22] Wang L G, Chen H and Zhu S Y 2005 Opt. Lett. 30 2936
[23] Kong Q, Shi H, Shi J and Chen X 2019 Opt. Express 27 11902
[24] Xu C R, Xu J P, Song G, Zhu C J, Yang Y P and Agarwal G 2016 Opt. Express 24 21767
[25] Bliokh K Y and Aiello A 2013 J. Opt. 15 014001
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[4] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[5] First principles study and comparison of vibrational and thermodynamic properties of XBi (X= In, Ga, B, Al)
Raheleh Pilevar Shahri, Arsalan Akhtar. Chin. Phys. B, 2017, 26(9): 093107.
No Suggested Reading articles found!