Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127502    DOI: 10.1088/1674-1056/ac0040

Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures

Lei Shen(沈磊)1,2,†, Guanjie Wu(武冠杰)3,†, Tao Sun(孙韬)1,2,†, Zhi Meng(孟智)1, Chun Zhou(周春)1, Wenyi Liu(刘文怡)4, Kang Qiu(邱康)1, Zongwei Ma(马宗伟)1, Haoliang Huang(黄浩亮)4, Yalin Lu(陆亚林)4, Zongzhi Zhang(张宗芝)3,‡, and Zhigao Sheng(盛志高)1,5,§
1 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences(CAS), Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Shanghai Ultra-Precision Optical Manufacturing Engineering Research Center and Key Laboratory of Micro and Nano Photonic Structures(MOE), Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China;
4 Anhui Laboratory of Advanced Photon Science and Technology, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
5 Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The magnetic anisotropy manipulation in the Sm3Fe5O12 (SmIG) films and its effect on the interfacial spin coupling in the CoFe/SmIG heterostructures were studied carefully. By switching the orientation of the Gd3Ga5O12 substrates from (111) to (001), the magnetic anisotropy of obtained SmIG films shifts from in-plane to out-of-plane. Similar results can also be obtained in the films on Gd3Sc2Ga3O12 substrates, which identifies the universality of such orientation-induced magnetic anisotropy switching. Additionally, the interfacial spin coupling and magnetic anisotropy switching effect on the spin wave in CoFe/SmIG magnetic heterojunctions have also been explored by utilizing the time-resolved magneto-optical Kerr effect technique. It is intriguing to find that both the frequency and effective damping factor of spin precession in CoFe/SmIG heterojunctions can be manipulated by the magnetic anisotropy switching of SmIG films. These findings not only provide a route for the perpendicular magnetic anisotropy acquisition but also give a further path for spin manipulation in magnetic films and heterojunctions.
Keywords:  perpendicular magnetic anisotropy      Sm3Fe5O12 films      interfacial spin coupling      CoFe/Sm3Fe5O12 heterojunction  
Received:  06 April 2021      Revised:  26 April 2021      Accepted manuscript online:  12 May 2021
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.47.Lx (Magnetic oxides)  
  78.20.Ls (Magneto-optical effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303603 and 2016YFA0401803), the National Natural Science Foundation of China (Grant Nos. U2032218, 11574316, 11874120, 61805256, and 11904367), the Plan for Major Provincial Science & Technology Project (Grant No. 202003a05020018), and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SLH011).
Corresponding Authors:  Zongzhi Zhang, Zhigao Sheng     E-mail:;

Cite this article: 

Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高) Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures 2021 Chin. Phys. B 30 127502

[1] Yi D, Flint C L, Balakrishnan P P, Mahalingam K, Urwin B, Vailionis A, N'Diaye A T, Shafer P, Arenholz E, Choi Y, Stone K H, Chu J H, Howe B M, Liu J, Fisher I R and Suzuki Y 2017 Phys. Rev. Lett. 119 077201
[2] Soumah L, Beaulieu N, Qassym L, Carretero C, Jacquet E, Lebourgeois R, Ben Youssef J, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355
[3] Mangin S, Ravelosona D, Katine J A, M. Carey J, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[4] Sbiaa R, Meng H and Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413
[5] You L, Sousa R C, Bandiera S, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 172411
[6] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S and Piramanayagam S N 2017 Mater. Today 20 530
[7] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[8] Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z and Wang K Y 2020 Adv. Mater. 32 1907929
[9] Zhang N, Cao Y, Li Y C, Andrew W R, Ji Y, Zheng H Z and Wang K Y 2020 Adv. Electron. Mater. 6 2000296
[10] Cao Y, Andrew W R, Sheng Y, Zheng H Z and Wang K Y 2019 Adv. Funct. Mater. 29 1808104
[11] Sheng Y, Edmonds K W, Ma X Q, Zheng H Z and Wang K Y 2018 Adv. Electron. Mater. 4 1800224
[12] Chen H J, Cheng D S, Yang H L, Wang D K, Zhou S M, Shi Z and Qiu X P 2020 Appl. Phys. Lett. 116 112401
[13] Emori S, Bauer U, Ahn S M, Martinez E and Beach G S 2013 Nat. Mater. 12 611
[14] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[15] Wu G J, Chen S H, Ren Y, Jin Q Y and Zhang Z Z 2019 ACS Appl. Nano Mater. 2 5140
[16] Wu G J, Zhu W H, Zhu Z D, Xue H W, Ren Y, Liu Y W, Jin Q Y and Zhang Z Z 2019 Phys. Chem. Chem. Phys. 21 16830
[17] Pashkevich M, Stupakiewicz A, Kirilyuk A, Stognij A, Maziewski A and Rasing T 2014 Appl. Surf. Sci. 305 117
[18] Guo C Y, Wan C H, Zhao M K, Wu H, Fang C, Yan Z R, Feng J F, Liu H F and Han X F 2019 Appl. Phys. Lett. 114 192409
[19] Krichevsky D M, Kalish A N, Kozhaev M A, Sylgacheva D A, Kuzmichev A N, Dagesyan S A, Achanta V G, Popova E, Keller N and Belotelov V I 2020 Phys. Rev. B 102 144408
[20] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431
[21] Stupakiewicz A, Szerenos K, Davydova M D, Zvezdin K A, Zvezdin A K, Kirilyuk A and Kimel A V 2019 Nat. Commun. 10 612
[22] Pashkevich M, Stupakiewicz A, Kirilyuk A, Maziewski A, Stognij A, Novitskii N, Kimel A V and Rasing T 2012 J. Appl. Phys. 111 023913
[23] Vukadinovic N, Ben Youssef J, Castel V and Labrune M 2009 Phys. Rev. B 79 184405
[24] Medwal R, Chaudhuri U, Vas J V, Deka A, Gupta S, Duchamp M, Asada H, Fukuma Y, Mahendiran R and Rawat R S 2020 ACS Appl. Mater. Interfaces 12 41802
[25] Wang R, Shang Y X, Wu R, Yang J B and Ji Y 2016 Chin. Phys. Lett. 33 047502
[26] Jin L, Jia K, Zhang D, Liu B, Meng H, Tang X, Zhong Z and Zhang H 2019 ACS Appl. Mater. Interfaces 11 35458
[27] Tomita S, Kato T, Tsunashima S, Iwata S, Fujii M and Hayashi S 2006 Phys. Rev. Lett. 96 167402
[28] Wang H L, Du C H, Chris Hammel P and Yang F Y 2014 Phys. Rev. B 89 134404
[29] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S 2017 Nat. Mater. 16 309
[30] Quindeau A, Avci C O, Liu W Q, Sun C L, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y B, Robinson J, Beach G S and Ross C A 2017 Adv. Electron. Mater. 3 1600376
[31] Ahmed A S, Lee A J, Bagues N, McCullian B A, Thabt A M, Perrine A, Wu P K, Rowland J R, Randeria M, Hammel P C, McComb D W and Yang F Y 2019 Nano Lett. 19 5683
[32] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B Q, Gonzalez-Fuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S and Ross C A 2018 Phys. Rev. Mater. 2 094405
[33] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008
[34] Kumar R, Samantaray B and Hossain Z 2019 J. Phys.:Condens. Matter 31 435802
[35] Lin Y N, Jin L C, Zhang H W, Zhong Z Y, Yang Q H, Rao Y H and Li M M 2020 J. Magn. Magn. Mater. 496 165886
[36] Zhang Y, Du Q Y, Wang C T, Yan W, Deng L J, Hu J J, Ross C A and Bi L 2019 APL Mater. 7 081119
[37] Guillot M, Rodic D and Mitric M 1993 J. Appl. Phys. 73 6304
[38] Huang S, Feng L, Shi W, Shi L R, Su K P, Wang H O and Huo D X 2019 J. Sol-Gel Sci. Tech. 90 611
[39] Huang S, Shi L R, Sun H G, Li C L, Chen L and Yuan S L 2016 J. Alloys Compd. 674 341
[40] Geller S, Williams H J, Sherwood R C, Remeika J P and Espinosa G P 1963 Phys. Rev. 131 1080
[41] Pearson R F 1962 J. Appl. Phys. 33 1236
[42] Yamahara H, Mikami M, Sekic M amd Tabata H 2011 J. Magn. Magn. Mater. 323 3143
[43] Mokarian Zanjani S and Onbaşlı M C 2020 J. Magn. Magn. Mater. 499 166108
[44] Le Guyader L, Kleibert A, Nolting F, Joly L, Derlet P M, Pisarev R V, Kirilyuk A, Rasing T and Kimel A V 2013 Phys. Rev. B 87 054437
[45] Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y and Cheng Z H 2018 Adv. Mater. 30 1706439
[46] He P, Ma X, Zhang J W, Zhao H B, Lupke G, Shi Z and Zhou S M 2013 Phys. Rev. Lett. 110 077203
[47] Baltz V, Sort J, Landis S, Rodmacq B and Dieny B 2005 Phys. Rev. Lett. 94 117201
[48] Zhang J, Zhou G, Yan Z, Ji H, Li X, Quan Z, Bai Y and Xu X 2019 ACS Appl. Mater. Interfaces 11 26460
[49] Papp A, Porod W and Csaba G 2015 J. Appl. Phys. 117 17E101
[50] Stupakiewicz A, Pashkevich M, Maziewski A, Stognij A and Novitskii N 2012 Appl. Phys. Lett. 101 262406
[51] Pashkevich M, Stupakiewicz A, Kimel A V, Kirilyuk A, Stognij A, Novitskii N, Maziewski A and Rasing T 2014 Europhys. Lett. 105 27006
[52] Kampen M V, Jozsa C, Kohlhepp J T, LeClair P, Lagae L, de Jonge W J M and Koopmans B 2002 Phys. Rev. Lett. 88 227201
[53] Deb M, Popova E, Hehn M, Keller N, Petit-Watelot S, Bargheer M, Mangin S and Malinowski G 2019 Phys. Rev. Appl. 12 044006
[54] Chen Z F, Yi M, Chen M, Li S F, Zhou S M and Lai T S 2012 Appl. Phys. Lett. 101 222402
[55] Zhang Z Z, Cui B Y, Wang G Z, Ma B, Jin Q Y and Liu Y W 2010 Appl. Phys. Lett. 97 172508
[56] Wu G J, Ren Y, Jin Q Y and Zhang Z Z 2020 ACS Appl. Nano Mater. 3 11555
[57] Malinowski G, Kuiper K C, Lavrijsen R, Swagten H J M and Koopmans B 2009 Appl. Phys. Lett. 94 102501
[58] Wu G J, Ren Y, He X D, Zhang Y, Xue H W, Ji Z H, Jin Q Y and Zhang Z Z 2020 Phys. Rev. Appl. 13 024027
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[3] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[4] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[5] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[6] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[7] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[8] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[9] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[10] Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure
Yi Liu(刘毅), Kai-Gui Zhu(朱开贵), Hui-Cai Zhong(钟汇才), Zheng-Yong Zhu(朱正勇), Tao Yu(于涛), Su-De Ma(马苏德). Chin. Phys. B, 2016, 25(11): 117805.
[11] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国). Chin. Phys. B, 2015, 24(9): 097506.
[12] Perpendicular magnetic tunnel junction and its application in magnetic random access memory
Liu Hou-Fang (刘厚方), Syed Shahbaz Ali, Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2014, 23(7): 077501.
[13] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao (朱涛). Chin. Phys. B, 2014, 23(4): 047504.
[14] Tunable interface anisotropy in Pt/Co1-xFex/Pt multilayer
Chen Yong-Yong (陈勇勇), Shi Zhong (时钟), Zhou Shi-Ming (周仕明), Rui Wen-Bin (芮文彬), Du Jun (杜军). Chin. Phys. B, 2013, 22(6): 067504.
[15] Strong perpendicular magnetic anisotropy in Co2FeAl0.5Si0.5 film sandwiched by MgO layers
Wang Sheng (王圣), Li Xiao-Qi (李晓其), Bai Li-Juan (白丽娟), Xu Xiao-Guang (徐晓光), Miao Jun (苗君), Jiang Yong (姜勇). Chin. Phys. B, 2013, 22(5): 057305.
No Suggested Reading articles found!