|
|
High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse |
Shu-Shan Zhou(周书山)1, Yu-Jun Yang(杨玉军)2, Yang Yang(杨扬)1, Ming-Yue Suo(索明月)1, Dong-Yuan Li(李东垣)1, Yue Qiao(乔月)2, Hai-Ying Yuan(袁海颖)2, Wen-Di Lan(蓝文迪)2, and Mu-Hong Hu(胡木宏)1,† |
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; 2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract High-order harmonic generation of the cyclo[18]carbon (C18) molecule under few-cycle circularly polarized laser pulse is studied by time-dependent density functional theory. Compared with the harmonic emission of the ring molecule C6 H6 having similar ionization potential, the C18 molecule has higher efficiency and cutoff energy than C6 H6 with the same laser field parameters. Further researches indicate that the harmonic efficiency and cutoff energy of the C18 molecule increase gradually with the increase of the laser intensity of the driving laser or decrease of the wavelength, both are larger than those of the C6 H6 molecule. Through the analysis of the time-dependent evolution of the electronic wave packets, it is also found that the higher efficiency of harmonic generation can be attributed to the larger spatial scale of the C18 molecule, which leads to a greater chance for the ionized electrons from one atom to recombine with others of the parent molecule. Selecting the suitable driving laser pulse, it is demonstrated that high-order harmonic generation in the C18 molecule has a wide range of applications in producing circularly polarized isolated attosecond pulse.
|
Received: 22 September 2022
Revised: 11 November 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12204214, 12074145, and 11627807). |
Corresponding Authors:
Mu-Hong Hu
E-mail: humuhong@163.com
|
Cite this article:
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏) High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse 2023 Chin. Phys. B 32 013201
|
[1] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [2] Yuan H Y, Yang Y J, Guo F M, Wang J and Cui Z W 2022 Opt. Express 30 19745 [3] l'Huillier A, Lompre L A, Mainfray G and Manus C 1983 Phys. Rev. A 27 2503 [4] Wu D, Guo F M, Chen J G, Wang J and Yang Y J 2020 J. Phys. B: At. Mol. Opt. Phys. 53 235601 [5] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S and Stagira S 2011 Nat. Phys. 7 822 [6] Henkel J, Witting T, Fabris D, Lein M, Knight P L, Tisch J W G and Marangos J P 2013 Phys. Rev. A 87 043818 [7] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874 [8] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510 [9] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971 [10] Ayuso D, Jiménez-Galán A, Morales F, Ivanov M and Smirnova O 2017 New J. Phys. 19 073007 [11] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett. 102 073902 [12] Graves C E et al. 2013 Nat. Mater. 12 293 [13] Cireasa R, Boguslavskiy A E, Pons B, Wong M C H, Descamps D, Petit S, Ruf H, Thiré N, Ferré A, Suarez J, Higuet J, Schmidt B E, Alharbi A F, Légaré F, Blanchet V, Fabre B, Patchkovskii S, Smirnova O, Mairesse Y and Bhardwaj V R 2015 Nat. Phys. 11 654 [14] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [15] Fleischer A, Kfir O, Diskin T, Sidorenko P and Cohen O 2014 Nat. Photon. 8 543 [16] Fan T, Grychtol P, Knut R, Hernández-García C, Hickstein D D, Zusin D, Gentry C, Dollar F J, Mancuso C A, Hogle C W, Kfir O, Legut D, Carva K, Ellis J L, Dorney K M, Chen C, Shpyrko O G, Fullerton E E, Cohen O, Oppeneer P M, Miloevi D B, Becker A, Jaro-Becker A A, Popmintchev T, Murnane M M and Kapteyn H C 2015 Proc. Natl. Acad. Sci. USA 112 14206 [17] Chen C, Tao Z, Hernández-García C, Matyba P, Carr A, Knut R, Kfir O, Zusin D, Gentry C, Grychtol P, Cohen O, Plaja L, Becker A, Jaron-Becker A, Kapteyn H and Murnane M 2016 2016 Sci. Adv. 2 e1501333 [18] Dixit G, Jiménez-Galán A, Mediauskas L and Ivanov M 2018 Phys. Rev. A 98 053402 [19] Harada Y, Haraguchi E, Kaneshima K and Sekikawa T 2018 Phys. Rev. A 98 021401 [20] Odak S and Miloevi D B 2006 Phys. Lett. A 355 368 [21] Yuan K J and Bandrauk A D 2012 J. Phys. B: At. Mol. Opt. Phys. 45 074001 [22] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003 [23] Chen F, Luo J and Luo F 2015 Opt. Commun. 342 68 [24] Mediauskas L, Wragg J, Hart H and Ivanov M Y 2015 Phys. Rev. Lett. 115 153001 [25] Li L, Wang Z, Li F and Long H 2017 Opt. Quant. Electron 49 73 [26] Dorney K M, Ellis J L, Hernández-García C, Hickstein D D, Mancuso C A, Brooks N, Fan T, Fan G, Zusin D, Gentry C, Grychtol P, Kapteyn H C and Murnane M M 2017 Phys. Rev. Lett. 119 063201 [27] Neufeld O and Cohen O 2018 Phys. Rev. Lett. 120 133206 [28] Zhu M F, Wang G L, Zhao S F, Li X Y and Zhou X X 2019 J. Mod. Opt. 66 1467 [29] Rego L, Román J S, Plaja L and Hernández-García C 2020 Opt. Lett. 45 5636 [30] Wardlow A and Dundas D 2016 Phys. Rev. A 93 023428 [31] Worner H J, Bertrand J B, Hockett P, Corkum P B and Villeneuve D M 2010 Phys. Rev. Lett. 104 233904 [32] Rupenyan A, Kraus P M, Schneider J and Wrner H J 2013 Phys. Rev. A 87 031401 [33] Penka E F, Couture-Bienvenue E and Bandrauk A D 2014 Phys. Rev. A 89 023414 [34] Zhu X S, Liu X, Li Y, Qin M Y, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A 91 043418 [35] Bandrauk A D and Yuan K J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 074001 [36] Houzet J, Hertz E, Billard F, Lavorel B and Faucher O 2013 Phys. Rev. A 88 023859 [37] Skantzakis E, Chatziathanasiou S, Carpeggiani P A, Sansone S, Nayak A, Gray D, Tzallas P, Charalambidis D, Hertz E and Faucher O 2016 Scientific Reports 6 39295 [38] Srngrd S A, Simonsen S I and Hansen J P 2013 Phys. Rev. A 87 053803 [39] Chen Z Y and Qin R 2019 Opt. Express 27 3761 [40] Klemke N, Tancogne-Dejean N, Rossi G M, Yang Y, Scheiba F, Mainz R E, Sciacca G D, Rubio A, Krtner F X and Mücke O D 2019 Nat. Commun. 10 1 [41] Luu T T and Wrner H J 2021 Eur. Phys. J. Spec. Top. 230 4057 [42] Averbukh V, Alon O E and Moiseyev N 2001 Phys. Rev. A 64 033411 [43] Baer R, Neuhauser D, Dánská P R and Moiseyev N 2003 Phys. Rev. A 68 043406 [44] Žd'ánská P, Averbukh V and Moiseyev N 2003 J. Chem. Phys. 118 8726 [45] Zhou S S, Li Q Y, Guo F M, Wang J, Chen J G and Yang Y J 2021 Chem. Phys. 545 111147 [46] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 Science 365 1299 [47] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [48] Tancogne-Dejean N, Mucke O D, Kartner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403 [49] Zhou S S, Guo J, Chen J G and Yang Y J 2017 J. At. Mol. Sci. 8 18 [50] Monfared M, Irani E and Sadighi-Bonabi R 2018 J. Chem. Phys. 148 234303 [51] Zhou S S, Yang Y J, Guo F M, Chen J G and Wang J 2020 IEEE J. Quant. Electron. 56 1 [52] Wardlow A and Dundas D 2016 Phys. Rev. A 93 023428 [53] Tancogne-Dejean N, Mücke O D, Krtner F X and Rubio A 2017 Nat. Commun. 8 745 [54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [55] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [56] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425 [57] Castro A, Marques M A and Rubio A 2004 J. Chem. Phys. 121 3425 [58] De Giovannini U, Larsen A H and Rubio A 2015 Eur. Phys. J. B 88 56 [59] Alberto C, Angel R and Eberhard U K G 2015 Eur. Phys. J. B 88 191 [60] Miloevi D B, Becker W and Kopold R 2000 Phys. Rev. A 61 063403 [61] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Phys. Commun. 151 60 [62] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Status Solidi B 243 2465 [63] Andrade X, Strubbe D, Giovannini U D, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques M A and Rubio A 2015 Phys. Chem. Chem. Phys. 17 31371 [64] Arulmozhiraja S and Ohno T 2008 J. Chem. Phys. 128 114301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|