Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 013201    DOI: 10.1088/1674-1056/aca3a1

High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse

Shu-Shan Zhou(周书山)1, Yu-Jun Yang(杨玉军)2, Yang Yang(杨扬)1, Ming-Yue Suo(索明月)1, Dong-Yuan Li(李东垣)1, Yue Qiao(乔月)2, Hai-Ying Yuan(袁海颖)2, Wen-Di Lan(蓝文迪)2, and Mu-Hong Hu(胡木宏)1,†
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  High-order harmonic generation of the cyclo[18]carbon (C18) molecule under few-cycle circularly polarized laser pulse is studied by time-dependent density functional theory. Compared with the harmonic emission of the ring molecule C6 H6 having similar ionization potential, the C18 molecule has higher efficiency and cutoff energy than C6 H6 with the same laser field parameters. Further researches indicate that the harmonic efficiency and cutoff energy of the C18 molecule increase gradually with the increase of the laser intensity of the driving laser or decrease of the wavelength, both are larger than those of the C6 H6 molecule. Through the analysis of the time-dependent evolution of the electronic wave packets, it is also found that the higher efficiency of harmonic generation can be attributed to the larger spatial scale of the C18 molecule, which leads to a greater chance for the ionized electrons from one atom to recombine with others of the parent molecule. Selecting the suitable driving laser pulse, it is demonstrated that high-order harmonic generation in the C18 molecule has a wide range of applications in producing circularly polarized isolated attosecond pulse.
Keywords:  time-dependent density functional theory      high-order harmonic generation      circularly polarized attosecond pulse  
Received:  22 September 2022      Revised:  11 November 2022      Accepted manuscript online:  17 November 2022
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12204214, 12074145, and 11627807).
Corresponding Authors:  Mu-Hong Hu     E-mail:

Cite this article: 

Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏) High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse 2023 Chin. Phys. B 32 013201

[1] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
[2] Yuan H Y, Yang Y J, Guo F M, Wang J and Cui Z W 2022 Opt. Express 30 19745
[3] l'Huillier A, Lompre L A, Mainfray G and Manus C 1983 Phys. Rev. A 27 2503
[4] Wu D, Guo F M, Chen J G, Wang J and Yang Y J 2020 J. Phys. B: At. Mol. Opt. Phys. 53 235601
[5] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S and Stagira S 2011 Nat. Phys. 7 822
[6] Henkel J, Witting T, Fabris D, Lein M, Knight P L, Tisch J W G and Marangos J P 2013 Phys. Rev. A 87 043818
[7] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874
[8] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510
[9] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971
[10] Ayuso D, Jiménez-Galán A, Morales F, Ivanov M and Smirnova O 2017 New J. Phys. 19 073007
[11] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett. 102 073902
[12] Graves C E et al. 2013 Nat. Mater. 12 293
[13] Cireasa R, Boguslavskiy A E, Pons B, Wong M C H, Descamps D, Petit S, Ruf H, Thiré N, Ferré A, Suarez J, Higuet J, Schmidt B E, Alharbi A F, Légaré F, Blanchet V, Fabre B, Patchkovskii S, Smirnova O, Mairesse Y and Bhardwaj V R 2015 Nat. Phys. 11 654
[14] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[15] Fleischer A, Kfir O, Diskin T, Sidorenko P and Cohen O 2014 Nat. Photon. 8 543
[16] Fan T, Grychtol P, Knut R, Hernández-García C, Hickstein D D, Zusin D, Gentry C, Dollar F J, Mancuso C A, Hogle C W, Kfir O, Legut D, Carva K, Ellis J L, Dorney K M, Chen C, Shpyrko O G, Fullerton E E, Cohen O, Oppeneer P M, Miloevi D B, Becker A, Jaro-Becker A A, Popmintchev T, Murnane M M and Kapteyn H C 2015 Proc. Natl. Acad. Sci. USA 112 14206
[17] Chen C, Tao Z, Hernández-García C, Matyba P, Carr A, Knut R, Kfir O, Zusin D, Gentry C, Grychtol P, Cohen O, Plaja L, Becker A, Jaron-Becker A, Kapteyn H and Murnane M 2016 2016 Sci. Adv. 2 e1501333
[18] Dixit G, Jiménez-Galán A, Mediauskas L and Ivanov M 2018 Phys. Rev. A 98 053402
[19] Harada Y, Haraguchi E, Kaneshima K and Sekikawa T 2018 Phys. Rev. A 98 021401
[20] Odak S and Miloevi D B 2006 Phys. Lett. A 355 368
[21] Yuan K J and Bandrauk A D 2012 J. Phys. B: At. Mol. Opt. Phys. 45 074001
[22] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003
[23] Chen F, Luo J and Luo F 2015 Opt. Commun. 342 68
[24] Mediauskas L, Wragg J, Hart H and Ivanov M Y 2015 Phys. Rev. Lett. 115 153001
[25] Li L, Wang Z, Li F and Long H 2017 Opt. Quant. Electron 49 73
[26] Dorney K M, Ellis J L, Hernández-García C, Hickstein D D, Mancuso C A, Brooks N, Fan T, Fan G, Zusin D, Gentry C, Grychtol P, Kapteyn H C and Murnane M M 2017 Phys. Rev. Lett. 119 063201
[27] Neufeld O and Cohen O 2018 Phys. Rev. Lett. 120 133206
[28] Zhu M F, Wang G L, Zhao S F, Li X Y and Zhou X X 2019 J. Mod. Opt. 66 1467
[29] Rego L, Román J S, Plaja L and Hernández-García C 2020 Opt. Lett. 45 5636
[30] Wardlow A and Dundas D 2016 Phys. Rev. A 93 023428
[31] Worner H J, Bertrand J B, Hockett P, Corkum P B and Villeneuve D M 2010 Phys. Rev. Lett. 104 233904
[32] Rupenyan A, Kraus P M, Schneider J and Wrner H J 2013 Phys. Rev. A 87 031401
[33] Penka E F, Couture-Bienvenue E and Bandrauk A D 2014 Phys. Rev. A 89 023414
[34] Zhu X S, Liu X, Li Y, Qin M Y, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A 91 043418
[35] Bandrauk A D and Yuan K J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 074001
[36] Houzet J, Hertz E, Billard F, Lavorel B and Faucher O 2013 Phys. Rev. A 88 023859
[37] Skantzakis E, Chatziathanasiou S, Carpeggiani P A, Sansone S, Nayak A, Gray D, Tzallas P, Charalambidis D, Hertz E and Faucher O 2016 Scientific Reports 6 39295
[38] Srngrd S A, Simonsen S I and Hansen J P 2013 Phys. Rev. A 87 053803
[39] Chen Z Y and Qin R 2019 Opt. Express 27 3761
[40] Klemke N, Tancogne-Dejean N, Rossi G M, Yang Y, Scheiba F, Mainz R E, Sciacca G D, Rubio A, Krtner F X and Mücke O D 2019 Nat. Commun. 10 1
[41] Luu T T and Wrner H J 2021 Eur. Phys. J. Spec. Top. 230 4057
[42] Averbukh V, Alon O E and Moiseyev N 2001 Phys. Rev. A 64 033411
[43] Baer R, Neuhauser D, Dánská P R and Moiseyev N 2003 Phys. Rev. A 68 043406
[44] Žd'ánská P, Averbukh V and Moiseyev N 2003 J. Chem. Phys. 118 8726
[45] Zhou S S, Li Q Y, Guo F M, Wang J, Chen J G and Yang Y J 2021 Chem. Phys. 545 111147
[46] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 Science 365 1299
[47] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[48] Tancogne-Dejean N, Mucke O D, Kartner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403
[49] Zhou S S, Guo J, Chen J G and Yang Y J 2017 J. At. Mol. Sci. 8 18
[50] Monfared M, Irani E and Sadighi-Bonabi R 2018 J. Chem. Phys. 148 234303
[51] Zhou S S, Yang Y J, Guo F M, Chen J G and Wang J 2020 IEEE J. Quant. Electron. 56 1
[52] Wardlow A and Dundas D 2016 Phys. Rev. A 93 023428
[53] Tancogne-Dejean N, Mücke O D, Krtner F X and Rubio A 2017 Nat. Commun. 8 745
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[56] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425
[57] Castro A, Marques M A and Rubio A 2004 J. Chem. Phys. 121 3425
[58] De Giovannini U, Larsen A H and Rubio A 2015 Eur. Phys. J. B 88 56
[59] Alberto C, Angel R and Eberhard U K G 2015 Eur. Phys. J. B 88 191
[60] Miloevi D B, Becker W and Kopold R 2000 Phys. Rev. A 61 063403
[61] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Phys. Commun. 151 60
[62] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Status Solidi B 243 2465
[63] Andrade X, Strubbe D, Giovannini U D, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques M A and Rubio A 2015 Phys. Chem. Chem. Phys. 17 31371
[64] Arulmozhiraja S and Ohno T 2008 J. Chem. Phys. 128 114301
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[5] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[6] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[7] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[8] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[9] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[10] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[11] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[12] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[13] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[14] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[15] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
No Suggested Reading articles found!