Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 013101    DOI: 10.1088/1674-1056/ac90b0
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks

Benquan Lu(卢本全)1 and Hong Chang(常宏)1,2,†
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 The University of Chinese Academy of Sciences, Beijing 100088, China
Abstract  The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce. In this work, the hyperfine-induced Landé $g$-factors and quadratic Zeeman shift coefficients of the ${n{\rm s}n{\rm p}}$ $^3P^{\rm o}_0$ clock states for $^{111,113}$Cd and $^{25}$Mg were calculated by using the multi-configuration Dirac-Hartree-Fock theory. To obtain accurate values of these parameters, the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects on the Zeeman and hyperfine interaction matrix elements, and energy separations were investigated in detail. We also estimated the contributions from perturbing states to the Landé $g$-factors and quadratic Zeeman shift coefficients concerned so as to truncate the summation over the perturbing states without loss of accuracy. Our calculations provide important data for estimating the first- and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.
Keywords:  optical lattice clock      hyperfine-induced Landé      g-factor      quadratic Zeeman shift coefficient      Mg and Cd  
Received:  13 July 2022      Revised:  29 August 2022      Accepted manuscript online:  09 September 2022
PACS:  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.60.+i (Zeeman and Stark effects)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775220), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), and the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004).
Corresponding Authors:  Hong Chang     E-mail:  changhong@ntsc.ac.cn

Cite this article: 

Benquan Lu(卢本全) and Hong Chang(常宏) Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks 2023 Chin. Phys. B 32 013101

[1] McGrew W F, Zhang X, Fasano R J, Schaffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[2] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[3] Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P and Lodewyck J 2013 Nat. Commun. 4 2109
[4] Lisdat C, Grosche G, Quintin N, Shi C, Raupach S M F, Grebing C, Nicolodi D, Stefani F, Al-Masoudi A, Dorscher S, Hafner S, Robyr J L, Chiodo N, Bilicki S, Bookjans E, Koczwara A, Koke S, Kuhl A, Wiotte F, Meynadier F, Camisard E, Abgrall M, Lours M, Legero T, Schnatz H, Sterr U, Denker H, Chardonnet C, Le Coq Y, Santarelli G, Amy-Klein A, Le Targat R, Lodewyck J, Lopez O and Pottie P E 2016 Nat. Commun. 7 12443
[5] Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B and Katori H 2016 Nat. Photon. 10 662
[6] Uzan J P 2003 Rev. Mod. Phys. 75 403
[7] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802
[8] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[9] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[10] Jefferts S R, Heavner T P, Parker T E, Shirley J H, Donley E A, Ashby N, Levi F, Calonico D and Costanzo G A 2014 Phys. Rev. Lett. 112 050801
[11] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[12] Huang Y, Zhang B L, Zeng M Y, Hao Y M, Ma Z X, Zhang H Q, Guan H, Chen Z, Wang M and Gao K L 2022 Phys. Rev. Appl. 17 034041
[13] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[14] Nemitz N, Ohkubo T, Takamoto M, Ushijima I, Das M, Ohmae N and Katori H 2016 Nat. Photon. 10 258
[15] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
[16] McFerran J J, Yi L, Mejri S, Di Manno S, Zhang W, Guena J, Le Coq Y and Bize S 2012 Phys. Rev. Lett. 108 183004
[17] Yamanaka K, Ohmae N, Ushijima I, Takamoto M and Katori H 2015 Phys. Rev. Lett. 114 230801
[18] Kulosa A P, Fim D, Zipfel K H, Ruhmann S, Sauer S, Jha N, Gibble K, Ertmer W, Rasel E M, Safronova M S, Safronova U I and Porsev S G 2015 Phys. Rev. Lett. 115 240801
[19] Sukachev D, Fedorov S, Tolstikhina I, Tregubov D, Kalganova E, Vishnyakova G, Golovizin A, Kolachevsky N, Khabarova K and Sorokin V 2016 Phys. Rev. A 94 022512
[20] Golovizin A A, Tregubov D O, Fedorova E S, Mishin D A, Provorchenko D I, Khabarova K Yu, Sorokin V N and Kolachevsky N N 2021 Nat. Commun. 12 5171
[21] Kaneda Y, Yarborough J M, Merzlyak Y, Yamaguchi A, Hayashida K, Ohmae N and Katori H 2016 Opt. Lett. 41 705
[22] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[23] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[24] Ohtsubo N, Li Y, Matsubara K, Ido T and Hayasaka K 2017 Opt. Express 25 11725
[25] Arnold K J, Kaewuam R, Roy A, Tan T R and Barrett M D 2018 Nat. Commun. 9 1650
[26] Peik E and Tamm C 2003 Europhys. Lett. 61 181
[27] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V and Derevianko A 2012 Phys. Rev. Lett. 108 120802
[28] Dzuba V A, Flambaum V V and Katori H 2015 Phys. Rev. A 91 022119
[29] Kozlov M G, Safronova M S, Crespo Lopez-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys. 90 045005
[30] Garstang R H 1962 J. Opt. Soc. Am. 52 845
[31] Safronova M S, Porsev S G, Sanner C and Ye J 2018 Phys. Rev. Lett. 120 173001
[32] Porsev S G, Ludlow A D, Boyd M M and Ye J 2008 Phys. Rev. A 78 032508
[33] Porsev S G, Safronova U I and Safronova M S 2017 Phys. Rev. A 96 012509
[34] Yamaguchi A, Safronova M S, Gibble K and Katori H 2019 Phys. Rev. Lett. 123 113201
[35] Dzuba V A and Derevianko A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 215005
[36] Porsev S G and Safronova M S 2020 Phys. Rev. A 102 012811
[37] Wu F F, Tang Y B, Shi T Y and Tang L Y 2020 Phys. Rev. A 101 053414
[38] Zhang T X, Lu B Q, Li J G, Li C. B, Chang H, Shi T. Y and Lu Z H 2021 J. Quantum Spectrosc. Radiat. Transfer 266 107562
[39] Lu B Q, Lu X T, Li J G and Chang H 2022 Chin. Phys. B 31 043101
[40] Taichenachev A V, Yudin V I, Oates C W, Hoyt C W, Barber Z W and Hollberg L 2006 Phys. Rev. Lett. 96 083001
[41] Lindgren I 1984 Rep. Prog. Phys. 47 345
[42] Jonsson P, Parpia F A and Froese Fischer C 1996 Comput. Phys. Commun. 96 301
[43] Cheng K T and Childs W J 1985 Phys. Rev. A 31 2775
[44] Andersson M and Jonsson P 2008 Comput. Phys. Commun. 178 156
[45] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
[46] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[47] Jonsson P, He X, Froese Fischer C and Grant I P 2007 Comput. Phys. Commun. 177 597
[48] Froese Fischer C, Brage T and Jonsson P 1997 Computational Atomic Structure — An MCHF Approach (London: Institute of Physics Publishing) p. 90
[49] Li J G, Godefroid M and Wang J G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115002
[50] Froese Fischer C, Gaigalas G, Jonsson P and Bieron J 2019 Comput. Phys. Commun. 237 184
[51] Lott S H, Roos C E and Ginter M L 1966 J. Opt. Soc. Am. 56 775
[52] Briand C and Solanki S K 1995 Astron. Astrophys. 299 596
[53] Li J G, Jonsson P, Godefroid M, Dong C Z and Gaigalas G 2012 Phys. Rev. A 86 052523
[54] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2021 NIST Atomic Spectra Database (ver. 5.9),[Online]. Available: https://physics.nist.gov/asd[2022, March 1]. National Institute of Standards and Technology, Gaithersburg, MD.
[55] Andersson M, Zou Y, Hutton R and Brage T 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095001
[56] Lurio A 1962 Phys. Rev. 126 1768
[57] Stone N J 2005 At. Data Nucl. Data Tables 90 75
[58] Kohler R and Thaddeus P 1964 Phys. Rev. 134 A1204
[59] Lurio A and Novick R 1964 Phys. Rev. 134 A608
[60] Kelly F M and Tomchuk E 1959 Proc. Phys. Soc. 74 689
[61] van der Veer W E, van Diest R J J, Donszelmann A and van Linden van den Heuvell H B 1992 Z. Phys. D: At., Mol. Clusters 24 365
[62] Masłowski P, Bielska K, Cygan A, Domysławska J, Lisak D, Ciuryło R, Bielski A and Trawinski R S 2009 Eur. Phys. J. D 51 295
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[3] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[4] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[5] Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice
Chen Ning (陈宁), Zhou Min (周敏), Chen Hai-Qin (陈海琴), Fang Su (方苏), Huang Liang-Yu (黄良玉), Zhang Xiao-Hang (张晓航), Gao Qi (高琪), Jiang Yan-Yi (蒋燕义), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(9): 090601.
No Suggested Reading articles found!