Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124701    DOI: 10.1088/1674-1056/ac989d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetic control of the instability in the liquid metal flow over a backward-facing step

Ya-Dong Huang(黄亚冬)1,2, Jia-Wei Fu(付佳维)2, and Long-Miao Chen(陈龙淼)2,†
1 Jiangsu University, Zhenjiang 212013, China;
2 Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The tile-type electromagnetic actuator (TEA) and stripe-type electromagnetic actuator (SEA) are applied to the active control of the perturbation energy in the liquid metal flow over a backward-facing step (BFS). Three control strategies consisting of base flow control (BFC), linear model control (LMC) and combined model control (CMC) are considered to change the amplification rate of the perturbation energy. CMC is the combination of BFC and LMC. SEA is utilized in BFC to produce the streamwise Lorentz force thus adjusting the amplification rate via modifying the flow structures, and the magnitude of the maximum amplification rate could reach to 6 orders. TEA is used in LMC to reduce the magnitude of the amplification rate via the wall-normalwise Lorentz force, and the magnitude could be decreased by 2 orders. Both TEA and SEA are employed in CMC where the magnitude of the amplification rate could be diminished by 3 orders. In other words, the control strategy of CMC could capably alter the flow instability of the liquid metal flow.
Keywords:  electromagnetic actuator      backward-facing step flow      flow instability      flow control  
Received:  01 July 2022      Revised:  25 September 2022      Accepted manuscript online:  10 October 2022
PACS:  47.20.-k (Flow instabilities)  
  47.85.L- (Flow control)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U2141246).
Corresponding Authors:  Long-Miao Chen     E-mail:  chenlongmiao@njust.edu.cn

Cite this article: 

Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼) Electromagnetic control of the instability in the liquid metal flow over a backward-facing step 2022 Chin. Phys. B 31 124701

[1] Deng Y G, Jiang Y and Liu J 2021 Appl. Therm. Eng. 193 117021
[2] Heinzel A, Hering W, Konys J, Marocco L, Litfin K, Müller G, Pacio J, Schroer C, Stieglitz R, Stoppel L, Weisenburger A and Wetzel T 2017 Energy Technol. 5 1026
[3] Kirillov P L 2018 Atom. Energy 124 238
[4] Miner A and Ghoshal U 2004 Appl. Phys. Lett. 85 506
[5] Li P P and Liu J 2011 Appl. Phys. Lett. 99 094106
[6] Panchadar K, West D, Taylor J A and Krupenkin T 2019 Appl. Phys. Lett. 114 093901
[7] Kherbeet A S, Safaei M R, Salman B H, Mohammed H A, Ahmed H E, Alawi O A and Khazaai M T 2016 Int. Commun. Heat Mass Transf. 76 237
[8] Iwai H, Nakabe K and Suzuki K 2000 Int. J. Heat Mass Transf. 43 457
[9] Juste G L, Fajardo P and Guijarro A 2016 Phys. Fluids 28 074106
[10] Blackburn H M, Barkley D and Sherwin S J 2008 J. Fluid Mech. 603 271
[11] Ghia K N, Osswald G A and Ghia U 1989 Int. J. Numer. Methods Fluids 9 1025
[12] Barkley D, Gomes M G M and Henderson R 2002 J. Fluid Mech. 473 167
[13] Lanzerstorfer D and Kuhlmann H C 2012 J. Fluid Mech. 693 1
[14] Kaiktsis L, Karniadakis G E and Orszag S 1996 J. Fluid Mech. 321 157
[15] Velazquez A, Arias J R and Mendez B 2008 Int. J. Heat Mass Transf. 51 2075
[16] Mehrez Z, Bouterra M, Cafsi A E, Belghith A and Quere P L 2009 Heat Mass Transf. 46 107
[17] Oyakawa K, Taira T, Senaha I and Nosoko T 1995 Int. Commun. Heat Mass Transf. 22 343
[18] Li Z Y, Guo S, Bai H L and Gao N 2019 Int. J. Heat Mass Transf. 130 240
[19] Hilo A K, Talib A R A, Iborra A A, Sultan M T H and Hamid M F A 2020 Energy 190 116294
[20] Kumar S and Vengadesan S 2018 Numer. Heat Tranf. A-Appl. 73 366
[21] Modestov M, Kolemen E, Fisher A E and Hvasta M G 2018 Nucl. Fusion 58 016009
[22] Hvasta M G, Kolemen E, Fisher A E and Ji H 2018 Nucl. Fusion 58 016022
[23] Cho S and Hong S H 1998 J. Phys. D-Appl. Phys. 31 2754
[24] Albrecht T, Stiller J, Metzkes H, Weier T and Gerbeth G 2013 Eur. Phys. J.-Spec. Top. 220 275
[25] Huang T D, ZHOU B M, Tang Z L and Zhang F 2017 Phys. Fluids 29 074105
[26] Hervé A, Sipp D, Schmid P J and Samuelides M A 2012 J. Fluid Mech. 702 26
[27] Gautier N and Aider J L 2014 J. Fluid Mech. 759 181
[28] Ljung L 1999 System Identification: Theory for the User, 2nd edn. (Prentice Hall)
[29] Du Y Q and Karniadakis G E 2000 Science 288 1230
[30] Rossi L and Thibault J P 2002 J. Turbul. 3 N5
[31] Sipp D and Schmid P J 2016 Appl. Mech. Rev. 68 020801
[32] Blackburn H M, Lee D, Albrecht T and Singh J 2019 Comput. Phys. Commun. 245 106804
[33] Barkley D, Blackburn H M and Sherwin S J 2008 Int. J. Numer. Meth. Fluids 57 1435
[34] Mao X R 2015 J. Fluid Mech 771 229
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[3] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[4] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[5] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[6] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[7] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[8] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[9] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[10] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[11] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[12] Flow control of micro-ramps on supersonic forward-facing step flow
Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平). Chin. Phys. B, 2016, 25(5): 054701.
[13] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[14] Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation
Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军). Chin. Phys. B, 2014, 23(7): 075210.
[15] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
No Suggested Reading articles found!