Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 125201    DOI: 10.1088/1674-1056/ac833f
Special Issue: SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
TOPICAL REVIEW—The third carbon: Carbyne with one-dimensional sp-carbon Prev   Next  

A review of arc-discharge method towards large-scale preparation of long linear carbon chains

Yi-Fan Zhang(张一帆)
Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou 313000, China
Abstract  Linear carbon chains as new one-dimensional (1D) nanomaterials attract attention for the predicted outstanding properties. However, the high reactivity of linear carbon chains hampers further experimental research. To date, different methods have been developed to synthesize new materials containing linear carbon chains. Among them, the arc-discharge method is a practical way to prepare both finite and infinite linear carbon chains. This review provides a brief discussion of the recent progress in the techniques to prepare carbon chain-based materials and then focuses on the arc-discharge method. The configuration of apparatus, optimal conditions, and the corresponding mechanism of arc-discharge method to prepare long linear carbon chain inside multi-walled carbon nanotubes are summarized in detail. The characterization techniques are introduced to evaluate the quality of products. Moreover, remaining challenges and perspectives are presented for further investigation of long linear carbon chains.
Keywords:  linear carbon chain      carbyne      carbon nanotube      arc-discharge method  
Received:  15 May 2022      Revised:  20 July 2022      Accepted manuscript online:  22 July 2022
PACS:  52.80.Vp (Discharge in vacuum)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Fund from the Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control at Huzhou University.
Corresponding Authors:  Yi-Fan Zhang     E-mail:  yifan_zhang@zjhu.edu.cn

Cite this article: 

Yi-Fan Zhang(张一帆) A review of arc-discharge method towards large-scale preparation of long linear carbon chains 2022 Chin. Phys. B 31 125201

[1] Hoffmann R, Kabanov A A, Golov A A and Proserpio D M 2016 Angew. Chem. Int. Ed. 55 10962
[2] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[3] Iijima S. 1991 Nature 354 56
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Hirsch A 2010 Nat. Mater. 9 868
[6] Artyukhov V I, Liu M and Yakobson B I 2014 Nano Lett. 14 4224
[7] Milani A, Tommasini M, Del Zoppo M, Castiglioni C and Zerbi G 2006 Phys. Rev. B 74 153418
[8] Karpfen A 1979 J. Phys. C: Solid State Phys. 12 3227
[9] Jacquemin D, Femenias A, Chermette H, Ciofini I, Adamo C, André J M and Perpeéte E A 2006 J. Phys. Chem. A 110 5952
[10] Peach M J G, Tellgren E I, Salek P, Helgaker T and Tozer D J 2007 J. Phys. Chem. A 111 11930
[11] Li J P, Meng S H, Lu H T and Tohyama T 2018 Chin. Phys. B 27 117101
[12] Romanin D, Monacelli L, Bianco R, Errea I, Mauri F and Calandra M 2021 J. Phys. Chem. Lett. 12 10339
[13] Kudryavtsev Y P, Heimann R B and Evsyukov S E 1996 J. Mater. Sci. 31 5557
[14] Heimann R B, Kleiman J and Salansky N M 1983 Nature 306 164
[15] Tarakeshwar P, Buseck P R and Kroto H W 2016 J. Phys. Chem. Lett. 7 1675
[16] Jensen W B 2006 J. Chem. Educ. 83 838
[17] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale 8 4414
[18] Casari C S and Milani A 2018 MRS Commun. 8 207
[19] Zhang K, Zhang Y F and Shi L 2020 Chin. Chem. Lett. 31 1746
[20] Abdurahman A, Shukla A and Dolg M 2002 Phys. Rev. B 65 115106
[21] Ravagnan L, Manini N, Cinquanta E, Onida G, Sangalli D, Motta C, Devetta M, Bordoni A, Piseri P and Milani P 2009 Phys. Rev. Lett. 102 245502
[22] Castelli I E, Salvestrini P and Manini N 2012 Phys. Rev. B 85 214110
[23] Nair A K, Cranford S W and Buehler M J 2001 Europhys. Lett. 95 16002
[24] Hu Y H 2001 J. Phys. Chem. C 115 1843
[25] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[26] Wang M and Lin S 2015 Sci. Rep. 5 18122
[27] Baeyer A 1885 Ber. Dtsch. Chem. Ges. 18 674
[28] Shi Shun A L K and Tykwinksi R R 2006 Angew. Chem. Int. Ed. 45 1034
[29] Anchel M 1953 J. Am. Chem. Soc. 75 4621
[30] Bu'Lock J D 1956 Q. Rev. Chem. Soc. 10 371
[31] Bohlmann F 1953 Ber. Deuts. Chem. Ges. 86 63
[32] Jones E R H, Lee H H and Whiting M C 1960 J. Chem. Soc. 3483
[33] Goresy A. EL and Donnay G 1968 Science 161 363
[34] Whittaker A G and Kintner P L 1969 Science 165 589
[35] Whittaker A G 1978 Science 200 763
[36] Hayatsu R, Scott R G, Studier M H, Lewis R S and Anders E 1980 Science 209 1515
[37] Smith P P K and Buseck P R 1982 Science 216 984
[38] Smith P P K and Buseck P R 1985 Science 229 486
[39] Baughman R H 2006 Science 312 1009
[40] Heymann D 2005 Carbon 43 2235
[41] Cataldo F 2006 Polym. Degrad. Stabil. 91 317
[42] Zhao X, Ando Y, Liu Y, Jinno M and Suzuki T 2003 Phys. Rev. Lett. 90 187401
[43] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A and Lapin Z J 2016 Nat. Mater. 15 634
[44] Heeg S, Shi L, Poulikakos L V, Pichler T and Novotny L 2018 Nano Lett. 18 5426
[45] Heeg S, Shi L, Pichler T and Novotny L 2018 Carbon 139 581
[46] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967
[47] Gao Y Z, Hou Y X, Gámez F G, Ferguson M J, Casado J and Tykwinski R R 2020 Nat. Chem. 12 1143
[48] Jin C, Lan H, Peng L, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501
[49] Börrnert F, Börrnert C, Gorantla S, Liu X J, Bachmatiuk A, Joswig J O, Wagner F R, Schäffel F, Warner J H, Schönfelder R, Rellinghaus B, Gemming T, Thomas J, Knupfer M, Büchner B and Rümmeli M H 2010 Phys. Rev. B 81 085439
[50] La Torre A, Botello-Mendez A, Baaziz W, Charlier J C and Banhart F 2015 Nat. Commun. 6 6636
[51] Casillas G, Mayoral A, Liu M, Ponce A and Jose-Yacaman M 2014 Carbon 66 436
[52] Ben Romdhane F, Adjizian J J, Charlier J C and Banhart F 2017 Carbon 122 92
[53] Pan B T, Xiao J, Li J L, Liu P, Wang C X and Yang G W 2015 Sci. Adv. 1 e1500857
[54] Yang F, Li C, Li J L, Liu P and Yang G W 2021 ACS Nano 15 16769
[55] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R and Xu W 2016 J. Am. Chem. Soc. 138 1106
[56] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 Science 365 1299
[57] Baughman R H, Eckhart H and Kertesz M 1987 J. Chem. Phys. 87 6687
[58] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[59] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J and Zhu D B 2010 Chem. Commun. 46 3256
[60] Zhou J Y, Li J Q, Liu Z F and Zhang J 2019 Adv. Mater. 31 1803758
[61] Yang F, Zheng Z Q, Lin Z Q, Wang B, Liu P and Yang G W 2020 Sensor. Actuat. B-Chem. 316 128200
[62] Yang F, Zheng Z Q, He Y, Liu P and Yang G W 2021 Adv. Funct. Mater. 31 2104254
[63] Xiao J, Li J L and Yang G W 2017 Small 13 1603495
[64] Gao X, Liu H B, Wang D and Zhang J 2019 Chem. Soc. Rev. 48 908
[65] Hu F H, Zeng C, Long R, Miao Y P, Wei W, Xu Q Z and Min W 2018 Nat. Methods 15 194
[66] Pavliček N, Gawel P, Kohn D R, Majzik Z, Xiong Y, Meyer G, Anderson H L and Gross L 2018 Nat. Chem. 10 853
[67] Cataldo F 1997 Polym. Int. 44 191
[68] Shi L, Senga R, Suenaga K, Chimborazo J, Ayala P and Pichler T 2021 Carbon 182 348
[69] Shi L, Senga R, Suenaga K, Kataura H, Saito T, Paz A P, Rubio A, Ayala P and Pichler T 2021 Nano Lett. 21 1096
[70] Cui W L, Shi L, Cao K C, Kaiser U, Saito T, Ayala P and Pichler T 2021 Angew. Chem. Int. Ed. 60 9897
[71] Chang W, Liu F, Liu Y, Zhu T, Fang L, Li Q, Liu Y and Zhao X 2021 Carbon 183 571
[72] Zhao C, Kitaura R, Hara H, Irle S and Shinohara H 2011 J. Phys. Chem. C 115 13166
[73] Cataldo F 2003 Carbon 41 2653
[74] Toma S, Asaka K, Irita M and Saito Y 2018 Surf. Interface Anal. 51 131
[75] Tsuji M, Tsuji T, Kuboyama S, Yoon S H, Korai Y, Tsujimoto T, Kubo K, Mori A and Mochida I 2002 Chem. Phys. Lett. 355 101
[76] Casari C S, Giannuzzi C S and Russo V 2016 Carbon 104 190
[77] Ravagnan L, Siviero F, Lenardi C, Piseri P, Barborini E and Milani P 2002 Phys. Rev. Lett. 89 285506
[78] Das R, Shahnavaz Z, Ali M E, Islam M M and Hamid S B A 2016 Nanoscale Res. Lett. 11 510
[79] Chen Y N, Zhao H B, Sheng L M, Yu L M, An K, Xu J Q, Ando Y and Zhao X L 2012 Chem. Phys. Lett. 538 72
[80] Farhat S and Scott C D 2006 J. Nanosci. Nanotechnol. 6 1189
[81] Castriota M, Cazzanelli E, Caputi L, Cupolillo A, Giallombardo C, Papagno L and Mariotto G 2008 Diam. Relat. Mater. 17 1716
[82] Kang C S, Fujisawa K, Ko Y I, Muramatsu H, Hayashi T, Endo M, Kim H J, Lim D, Kim J H, Jung Y C, Terrones M, Dresselhaus M S and Kim Y A 2016 Carbon 107 217
[83] Jinno M, Bandow S and Ando Y 2004 Chem. Phys. Lett. 398 256
[84] Cazzanelli E, Castriota M, Caputi L S, Cupolillo A, Giallombardo C and Papagno L 2007 Phys. Rev. B 75 121405
[85] Andrade N F, Vasconcelos T L, Gouvea C P, Archanjo B S, Achete C A, Kim Y A, Endo M, Fantini C, Dresselhaus M S and Souza Filho A G 2015 Carbon 90 172
[86] Scuderi V, Scalese S, Bagiante S, Compagnini G, D'Urso L and Privitera V 2009 Carbon 47 2112
[87] Zhang Y, Zhao J, Fang Y, Liu Y and Zhao X L 2018 Nanoscale 10 17824
[88] Zhang, Y, Chang W, Liu Y, Maruyama T and Zhao X 2020 Carbon 158 672
[89] Kim Y A, Muramatsu H, Hayashi T and Endo M 2012 Carbon 50 4588
[90] Qin L, Zhao X, Hirahara K, Miyamoto Y, Ando Y and Iijima S 2000 Nature 408 50
[91] Zhao X, Liu Y, Inoue S, Suzuki T, Jones R O and Ando Y 2004 Phys. Rev. Lett. 92 125502
[92] Iijima S, Ajayan P M and Ichihashi T 1992 Phys. Rev. Lett. 69 3100
[93] Saito Y, Yoshikawa T, Inagaki M, Tomita M and Hayashi T 1993 Chem. Phys. Lett. 204 277
[94] Liu Y and Jones R O 2003 Phys. Rev. B 68 125413
[95] Tabata H, Fujii M, Hayashi S, Doi T and Wakabayashi T 2006 Carbon 44 3168
[96] Shi L, Rohringer P, Wanko M, Rubio A, Waßerroth S, Reich S, Cambré S, Wenseleers W, Ayala P and Pichler T 2017 Phys. Rev. Mater. 1 075601
[97] Yang X G, Lv C F, Yao Z, Yao M G, Qin J X, Li X, Shi L, Du M R, Liu B B and Shan C X 2020 Carbon 159 266
[98] Neves W Q, Alencar R S, Ferreira R S, Torres-Dias A C, Andrade N F, San-Miguel A, Kim Y A, Endo M, Kim D W, Muramatsu H, Aguiar A L and Souza A G 2018 Carbon 133 446
[99] Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvão D S, Dresselhaus M S and Souza Filho A G 2015 J. Phys. Chem. C 119 10669
[100] Sharma K, Costa N, Kim Y A, Muramatsu H, Neto N M B, Martins L G P, Kong J, Paschoal A R and Araujo P T 2020 Phys. Rev. Lett. 125 105501
[101] Costa N, Sharma K, Kim Y A, Choi G B, Endo M, Neto N M B, Paschoal A R and Araujo P T 2021 Phys. Rev. Lett. 126 125901
[102] Tschannen C D, Frimmer M, Vasconcelos T L, Shi L, Pichler T and Novotny L 2022 Nano Lett. 22 3260
[103] Tschannen C D, Frimmer M, Vasconcelos T L, Shi L, Pichler T, Reich S, Heeg S and Novotny L 2021 ACS Nano 15 12249
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[7] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[8] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[9] One-dimensional sp carbon: Synthesis, properties, and modifications
Chao-Fan Lv(吕超凡), Xi-Gui Yang(杨西贵), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2022, 31(12): 128103.
[10] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[11] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[14] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[15] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
No Suggested Reading articles found!