Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058505    DOI: 10.1088/1674-1056/ab81f9
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Noise temperature distribution of superconducting hot electron bolometer mixers

Kang-Min Zhou(周康敏)1,2, Wei Miao(缪巍)1,2, Yue Geng(耿悦)1,2,4, Yan Delorme3, Wen Zhang(张文)1,2, Yuan Ren(任远)1,2, Kun Zhang(张坤)1,2, Sheng-Cai Shi(史生才)1,2
1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China;
2 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210023, China;
3 Observatoire de Paris, 75014 Paris, France;
4 University of Science and Technology of China, Hefei 230026, China
Abstract  We report on the investigation of optimal bias region of a wide-band superconducting hot electron bolometer (HEB) mixer in terms of noise temperature performance for multi-pixel heterodyne receiver application in the 5-meter Dome A Terahertz Explorer (DATE5) telescope. By evaluating the double sideband (DSB) receiver noise temperature (Trec) across a wide frequency range from 0.2 THz to 1.34 THz and with a large number of bias points, a broad optimal bias region has been observed, illustrating a good bias applicability for multipixel application since the performance of the HEB mixer is uniquely determined by each bias point. The noise temperature of the HEB mixer has been analyzed by calibrating the noise contribution of all RF components, whose transmissions have been measured by a time-domain spectroscopy. The corrected noise temperature distribution shows a frequency independence relation. The dependence of the optimal bias region on the bath temperature of the HEB mixer has also been investigated, the bath temperature has limited effect on the lowest receiver noise temperature until 7 K, however the optimal bias region deteriorates obviously with increasing bath temperature.
Keywords:  superconducting hot electron bolometer (HEB) mixer      noise temperature distribution      bath temperature dependence      frequency dependence  
Received:  09 December 2019      Revised:  17 January 2020      Accepted manuscript online: 
PACS:  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the Chinese Academy of Sciences (Grant Nos. GJJSTD20180003 and QYZDJ-SSW-SLH043), the National Key Basic Research and Development Program of China (Grant Nos. 2017YFA0304003 and 2018YFA0404701), the National Natural Science Foundation of China (Grant Nos. 11603081, 11673073, U1831202, and 11873099), and PICS projects between the CAS and the CNRS.
Corresponding Authors:  Sheng-Cai Shi     E-mail:  scshi@pmo.ac.cn

Cite this article: 

Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才) Noise temperature distribution of superconducting hot electron bolometer mixers 2020 Chin. Phys. B 29 058505

[1] Gershenzon E M, Gol'tsman G N, Gogidze I G, Elant'ev A I, Karasik B S and Semenov A D 1990 Sov. Phys. Supercond. 3 1582
[2] Meledin D, Pavolotsky A, Desmaris V, Lapkin I, Risacher C, Perez V, Henke D, Nystrom O, Sundin E, Dochev D, Pantaleev M, Fredrixon M, Strandberg M, Voronov B, Gol'tsman G N and Belitsky V 2009 IEEE Trans. Microw. Theory Tech. 57 89
[3] Cherednichenko S, Drakinskiy V, Berg T, Khosropanah P and Kollberg E 2008 Rev. Sci. Instrum. 79 034501
[4] Gu M, Kang L, Zhang L B, Zhao Q Y, Jia T, Wan C, Xu R Y, Yang X Z and Wu P H 2015 Chin. Phys. Lett. 32 038501
[5] Li J, Wang M J, Shi S C and Matsuo H 2007 Chin. Phys. Lett. 24 570
[6] Zhang Q Y, Dong W H, He G F, Li T F, Liu J S and Chen W 2014 Acta Phys. Sin. 63 200303 (in Chinese)
[7] Huang Y R, Chiu C P, Lu W C, Chang H H, Chiang Y Y and Wang M J 2016 Proceeding of URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), August 21-25, 2016, Seoul, South Korea, pp. 569-571
[8] Pütz P, Büchel D, Jacobs K, Schultz M and Honingh C E 2015 Proceeding of 26th Int. Symp. Space THz Technology, March 16-18, 2015, Cambridge, MA, USA
[9] Silva J R G D 2016 Study on the viability of a 4×2 HEB mixer array at super-THz based on a Fourier phase grating LO for space applications (Master Dissertation)
[10] Rigopoulou D, Caldwell M, Ellison B, Pearson C, Caux E, Cooray A, Gallego J D, Gerin M, Goicoechea J R, Goldsmith P, Kramer C, Lis D C, Molinari S, Ossenkopf-Okada V, Savini G, Tan B K, Tielens X, Viti S, Wiedner M and Yassin G 2016 Proceeding of SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, July 29, 2016, Edinburgh, United Kingdom, p. 99042K
[11] Shi S C, Paine S, Yao Q J, Lin Z H, Li X X, Duan W Y, Matsuo H, Zhang Q Z, Yang J, Ashley M C B, Shang Z H and Hu Z W 2016 Nature Astronomy 10001
[12] Zhu H T, Valentin J, Vacelet T, Herth E, Delorme Y and Wiedner M 2019 Proceeding of 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 1-6, 2019, Paris, France, pp. 1-2
[13] Ding J Q, Hu J, Shi S C and Zhao Y 2018 IEEE Access Vol. 6 pp. 42507-42515
[14] Miao W, Zhang W, Zhong J Q, Shi S C, Delorme Y, Lefevre R, Feret A and Vacelet T 2014 Appl. Phys. Lett. 104 052605
[15] Kerr A R 1999 IEEE Trans. Microw. Theory Tech. 47 325
[16] Baselmans J J A, Baryshev A and Reker S F 2005 Appl. Phys. Lett. 86 163503
[17] FEKO: A computer code for the analysis of electromagnetic problems, EM Software & Systems-S.A. (Pty) Ltd., Stellenbosch, South Africa
[18] Paine S, Am Atmospheric Model, Available: https://www.cfa.harvard.edu/~spaine/am/
[19] Zhou K M, Miao W, Lou Z, Hu J, Li S L, Zhang W, Shi S C, Lefevre R, Delorme Y and Vacelet T 2015 IEEE Trans. Appl. Supercond. 25.3: 1-5
[20] Zhou K M, Miao W, Lefevre R, Delorme Y and Shi S C 2016 Proceeding of URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), August 21-25, 2016, Seoul, South Korea, pp. 2010-2012
[21] Zhang W, Li N, Jiang L, Ren Y, Yao Q J, Lin Z H, Shi S C, Voronov B M, and Gol'tsman G N. 2007 Proceeding of SPIE 6840, Terahertz Photonics 684007, February 8, 2008, Beijing, China, p. 684007
[1] The frequency dependence of AC transport losses in stacked Bi-2223/Ag superconducting tapes
Zhang Guo-Min (张国民), Lin Liang-Zhen (林良真), Xiao Li-Ye (肖立业), Qiu Ming (丘明), Yu Yun-Jia (余运佳), Hui Dong (惠东). Chin. Phys. B, 2003, 12(5): 553-556.
No Suggested Reading articles found!