Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107801    DOI: 10.1088/1674-1056/23/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever

Ding Li-Ping (丁丽萍)a b, Mao Tian-Hua (毛添华)a b, Fu Hao (付号)a, Cao Geng-Yu (曹更玉)a
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institution of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The relationship between the photothermal cooling efficiency of a micro-cantilever's mechanical mode and the environmental temperature is studied. The micro-cantilever and a polished fiber end form a low finesse Fabry-Perot (FP) cavity. Experimental results in a temperature range from 77 K to 298 K show that temperature has an obvious influence on photothermal cooling efficiency. The photothermal cooling efficiency, η ph, at 100 K is 10 times that at 298 K. This accords well with the theoretical analysis that the high photothermal cooling efficiency can be achieved when photothermal response time, τph, and mechanical resonant frequency, ω0, are close to the optimal photothermal cooling condition ω0 τph=1. Our study provides an important approach for high effective photothermal cooling and high-sensitivity measurement for force microscopy.
Keywords:  micro-cantilever      FP cavity      photothermal cooling      temperature dependence      optomechanics  
Received:  04 April 2014      Revised:  30 May 2014      Accepted manuscript online: 
PACS:  78.20.nb (Photothermal effects)  
  42.60.-v (Laser optical systems: design and operation)  
  42.55.Sa (Microcavity and microdisk lasers)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB922101).
Corresponding Authors:  Cao Geng-Yu     E-mail:  gycao@wipm.ac.cn
About author:  78.20.nb; 42.60.-v; 42.55.Sa

Cite this article: 

Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉) Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever 2014 Chin. Phys. B 23 107801

[1]Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[2]Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Nature 444 71
[3]Dantan A, Genes C, Vitali D and Pinard M 2008 Phys. Rev. A 77 011804
[4]Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
[5]Corbitt T, Ottaway D, Innerhofer E, Pelc J and Mavalvala N 2006 Phys. Rev. A 74 021802
[6]Chen H J and Mi X W 2011 Chin. Phys. B 20 124203
[7]Schliesser A, Del'Haye P, Nooshi N, Vahala K J and Kippenberg T J 2006 Phys. Rev. Lett. 97 243905
[8]Jourdan G, Comin F and Chevrier J 2008 Phys. Rev. Lett. 101 133904
[9]Metzger C H, Ludwig M, Neuenhahn C, Ortlieb A, Favero I, Karrai K and Marquardt F 2008 Phys. Rev. Lett. 101 133903
[10]Fu H, Liu Y, Chen J and Cao G Y 2010 Sens. Actuators A 163 533
[11]Barton R A, Storch I R, Adiga V P, Sakakibara R, Cipriany B R, Ilic B, Wang S P, Peijie Ong, McEuen P L, Parpia J M and Craighead H G 2012 Nano Lett. 12 4681
[12]Metzger C H and Karrai K 2004 Nature 432 1002
[13]Liberato S D, Lambert N and Nori F 2011 Phys. Rev. A 83 033809
[14]Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[15]Schliesser A, Arcizet O, Rivi'ere R, Anetsberger G and Kippenberg T J 2009 Nat. Phys. 5 509
[16]Sadewasser S, Jelinek P, Fang C K, Custance O, Yamada Y, Sugimoto Y, Abe M and Morita S 2009 Phys. Rev. Lett. 103 266103
[17]Fu H, Liu C D, Liu Y, Chu J R and Cao G Y 2012 Opt. Lett. 37 584
[18]Vogel M, Mooser C and Karrai K 2003 Appl. Phys. Lett. 83 1337
[19]Venstra W J, Westra H J R and van der Zant H S J 2010 Appl. Phys. Lett. 97 193107
[20]Liu Y, Kong W, Zhang T L, Zhao G and Chu J R 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 20-23, Xiamen, China, p. 633
[21]Datskos P G and Sauers I 1999 Sens. Actuators B: Chemical 61 75
[22]Serrano J R, Phinneya L M and Rogers J W 2009 Int. J. Heat Mass Transfer 52 2255
[23]Abdi M and Bahrampour A R 2012 Phys. Rev. A 85 063839
[24]Metzger C H, Favero I, Ortlieb A and Karrai K 2008 Phys. Rev. B 78 035309
[25]Barnes J R, Stephenson R J, Woodburn C N, O'Shea S J, Welland M E, Rayment T, Gimzewski J K and Gerber Ch 1994 Rev. Sci. Instrum. 65 3793
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[4] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[5] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[6] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[7] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[8] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[9] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[10] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[11] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[12] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[13] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[14] Three-mode optomechanical system for angular velocity detection
Kai Li(李凯), Sankar Davuluri, Yong Li(李勇). Chin. Phys. B, 2018, 27(8): 084203.
[15] Controlling the entanglement of mechanical oscillators in composite optomechanical system
Jun Zhang(张俊), Qing-Xia Mu(穆青霞), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2018, 27(4): 040304.
No Suggested Reading articles found!