INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept |
Xi-Le Wei(魏熙乐), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思远), and Chen Liu(刘晨)† |
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
|
|
Abstract This paper provides an adaptive closed-loop strategy for suppressing the pathological oscillations of the basal ganglia based on a variable universe fuzzy algorithm. The pathological basal ganglia oscillations in the theta (4-9 Hz) and beta (12-35 Hz) frequency bands have been demonstrated to be associated with the tremor and rigidity/bradykinesia symptoms in Parkinson's disease (PD). Although the clinical application of open-loop deep brain stimulation (DBS) is effective, the stimulation waveform with the fixed parameters cannot be self-adjusted as the disease progresses, and thus the stimulation effects go poor. To deal with this difficult problem, a variable universe fuzzy closed-loop strategy is proposed to modulate different PD states. We establish a cortico-basal ganglia-thalamocortical network model to simulate pathological oscillations and test the control effect. The results suggest that the proposed closed-loop control strategy can accommodate the variation of brain states and symptoms, which may become an alternative method to administrate the symptoms in PD.
|
Received: 14 March 2022
Revised: 30 July 2022
Accepted manuscript online: 26 August 2022
|
PACS:
|
87.19.ll
|
(Models of single neurons and networks)
|
|
87.19.lm
|
(Synchronization in the nervous system)
|
|
87.19.xp
|
(Motor system disease (Parkinson's, etc.))
|
|
87.19.lr
|
(Control theory and feedback)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62173241 and 62171312) and the Natural Science Foundation of Tianjin, China (Grant Nos. 20JCQNJC01160 and 19JCZDJC36500). The authors also gratefully acknowledge the financial support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control (Lanzhou Jiaotong University), Ministry of Education, China (Grant No. KFKT2020-01). |
Corresponding Authors:
Chen Liu
E-mail: liuchen715@tju.edu.cn
|
Cite this article:
Xi-Le Wei(魏熙乐), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思远), and Chen Liu(刘晨) Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept 2022 Chin. Phys. B 31 128701
|
[1] Dorsey E R, Elbaz A, Nichols E, et al. 2018 Lancet Neurol. 17 939 [2] Modolo J, Legros A, Thomas A W and Beuter A 2011 Interface Focus. 1 61 [3] Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamas G and Groppa S 2018 Front Neurol. 9 711 [4] Chagraoui A, Boulain M, Juvin L, Anouar Y, Barriere G and Deurwaerdere P 2019 Int. J. Mol. Sci. 21 294 [5] Grahn P J, Mallory G W, Khurram O U, Berry B M, Hachmann J T, Bieber A J, Bennet K E, Min H K, Chang S Y, Lee K H and Lujan J L 2014 Front. Neurosci. 8 169 [6] Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber S N, Israel Z, Vaadia E and Bergman H 2011 Neuron 72 370 [7] Bronstein J M, Tagliati M, Alterman R L, et al. 2011 Arch. Neurol. 68 165 [8] Fox S H, Katzenschlager R, Lim S Y, Barton B, de Bie R M A, Seppi K, Coelho M and Sampaio C 2018 Mov. Disord. 33 1248 [9] McKinnon C, Gros P, Lee D J, Hamani C, Lozano A M, Kalia L V and Kalia S K 2019 Ann. Clin. Transl. Neurol. 6 174 [10] Rizzone M G, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, Piano C, Piccininni C, Romito L M, Lopiano L and Albanese A 2014 Parkinsonism Relat. Disord. 20 376 [11] Li Q, Ke Y, Chan D C, Qian Z M, Yung K K, Ko H, Arbuthnott G W and Yung W H 2012 Neuron 76 1030 [12] Garcia-Munoz M, Carrillo-Reid L and Arbuthnott G W 2010 Front. Neuroanat. 4 144 [13] Kim S, Kang S, Kim J, Lee D, Kim S, Lee J, Jang K I, Oh Y S, Rah J C, Huh M S, Paek S H and Choi J W 2021 IEEE Trans. Mol. Biol. Multiscale Commun. 7 209 [14] Lozano A M, Lipsman N, Bergman H, Brown P, Chabardes S, Chang J W, Matthews K, McIntyre C C, Schlaepfer T E, Schulder M, Temel Y, Volkmann J and Krauss J K 2019 Nat. Rev. Neurol. 15 148 [15] Parastarfeizabadi M and Kouzani A Z 2017 J. Neuroeng. Rehabil. 14 79 [16] Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green A L, Aziz T Z and Brown P 2013 Ann. Neurol. 74 449 [17] Detorakis G I, Chaillet A, Palfi S and Senova S 2015 Front. Neurosci. 9 237 [18] Hamani C, Richter E, Schwalb J M and Lozano A M 2005 Neurosurgery 56 1313 [19] Little S, Beudel M, Zrinzo L, Foltynie T, Limousin P, Hariz M, Neal S, Cheeran B, Cagnan H, Gratwicke J, Aziz T Z, Pogosyan A and Brown P 2016 J. Neurol. Neurosurg. Psychiatry 87 717 [20] Eusebio A and Brown P 2009 Exp. Neurol. 217 1 [21] Wingeier B, Tcheng T, Koop M M, Hill B C, Heit G and Bronte-Stewart H M 2006 Exp. Neurol. 197 244 [22] Yu H T, Meng Z H, Liu C, Wang J and Liu J 2021 Chin. Phys. B 30 038703 [23] Liu C, Zhao G, Meng Z, Zhou C, Zhu X, Zhang W, Wang J, Li H, Wu H, Fietkiewicz C and Loparo K A 2021 Cogn. Neurodyn. 15 1157 [24] Wang J J, Yao Y, Gao Z W, Li X L and Wang J S 2020 Chin. Phys. B 29 058701 [25] Fleming J E, Dunn E and Lowery M M 2020 Front. Neurosci. 14 166 [26] Bronte-Stewart H, Barberini C, Koop M M, Hill B C, Henderson J M and Wingeier B 2009 Exp. Neurol. 215 20 [27] Brown P and Eusebio A 2008 Mov. Disord. 23 12 [28] Santaniello S, Fiengo G, Glielmo L and Grill W M 2011 IEEE Trans. Neural. Syst. Rehabil. Eng. 19 15 [29] Kuo C H, White-Dzuro G A and Ko A L 2018 Neurosurg. Focus 45 E2 [30] Pyragas K, Popovych O V and Tass P A 2007 Europhys. Lett. 80 40002 [31] Liu C, Wang J, Deng B, Wei X L, Yu H T and Li H Y 2015 Neurocomputing 151 1507 [32] Izhikevich E M 2003 IEEE Trans. Neural. Netw. 14 1569 [33] Butson C R and McIntyre C C 2007 Clin. Neurophysiol. 118 1889 [34] Bing C, Liu X P, Ge S S and Chong L 2012 IEEE Trans. Fuzzy Syst. 20 1012 [35] Yazdanbakhsh O and Dick S 2018 Fuzzy Set. Syst. 338 1 [36] Zadeh L A 2008 Inform. Sci. 178 2751 [37] Vlamou E and Papadopoulos B 2019 AIMS Neurosci. 6 266 [38] Liu C, Wang J, Yu H, Deng B, Wei X, Li H, Loparo K A and Fietkiewicz C 2015 Commun. Nonlinear Sci. 28 10 [39] Steigerwald F, Potter M, Herzog J, Pinsker M, Kopper F, Mehdorn H, Deuschl G and Volkmann J 2008 J. Neurophysiol. 100 2515 [40] Haber S N 2003 J. Chem. Neuroanat. 26 317 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|