Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126401    DOI: 10.1088/1674-1056/ac8ce1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations

Zhanglin Hou(侯章林)1,2,3,†,‡, 1,†, Jieli Wang(王杰利)4, Ying Zeng(曾颖)1,3, Zhiyuan Zhao(赵志远)1,3, Xing Huang(黄兴)5,6,§, Kun Zhao(赵坤)1,3,7,8,9,¶
1 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
2 Key Laboratory of Systems Bioengineering(Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
3 School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Research Center of Computational Physics, School of Mathematics and Physics, Mianyang Teachers'College, Mianyang 621000, China;
5 Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China;
6 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China;
7 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
8 Songshan Lake Materials Laboratory, Dongguan 523808, China;
9 Oujiang Laboratory(Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, China
Abstract  Two-dimensional (2D) melting is a fundamental research topic in condensed matter physics, which can also provide guidance on fabricating new functional materials. Nevertheless, our understanding of 2D melting is still far from being complete due to existence of possible complicate transition mechanisms and absence of effective analysis methods. Here, using Monte Carlo simulations, we investigate 2D melting of 60° rhombs which melt from two different surface-fully-coverable crystals, a complex hexagonal crystal (cHX) whose primitive cell contains three rhombs, and a simple rhombic crystal (RB) whose primitive cell contains one rhomb. The melting of both crystals shows a sequence of solid, hexatic in molecular orientation (Hmo), and isotropic phases which obey the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) theory. However, local polymorphic configuration (LPC) based analysis reveals different melting mechanisms: the cHX-Hmo transition is driven by the proliferation of point-like defects during which defect-associated LPCs are generated sequentially, whereas the RB-Hmo transition is driven by line defects where defect-associated LPCs are generated simultaneously. These differences result in the observed different solid-Hmo transition points which are φA=0.812 for the cHX-Hmo and φA=0.828 for the RB-Hmo. Our work will shed light on the initial-crystal-dependence of 2D melting behavior.
Keywords:  two-dimensional melting      phase transition      molecular-orientational forming liquid crystal      local environment      melting mechanism  
Received:  28 May 2022      Revised:  26 July 2022      Accepted manuscript online:  26 August 2022
PACS:  64.60.-i (General studies of phase transitions)  
  64.60.Cn (Order-disorder transformations)  
  05.10.Ln (Monte Carlo methods)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874277, 21621004, 12104453, and 12090054) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33030300).
Corresponding Authors:  Zhanglin Hou, Kun Zhao, Fangfu Ye     E-mail:  zl_hou@tju.edu.cn;kzhao@uestc.edu.cn;fye@iphy.ac.cn

Cite this article: 

Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富) Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations 2022 Chin. Phys. B 31 126401

[1] Glaser M A and Clark N A 1993 Adv. Chem. Phys. 83 543
[2] Strandburg K J 1988 Rev. Mod. Phys. 60 161
[3] Bernal J D 1959 Nature 183 141
[4] Bernal J 1960 Nature 185 68
[5] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[6] Berezinskii V 1971 Sov. Phys. JETP 32 493
[7] Berezinskii V 1972 Sov. Phys. JETP 34 610
[8] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[9] Halperin B I and Nelson D R 1978 Phys. Rev. Lett. 41 121
[10] Young A P 1979 Phys. Rev. B 19 1855
[11] Nelson D R 1978 Phys. Rev. B 18 2318
[12] Nelson D R and Halperin B I 1979 Phys. Rev. B 19 2457
[13] Ryzhov V N, Tareyeva E, Fomin Y D and Tsiok E N 2017 Phys. Usp. 60 857
[14] Bates M A and Frenkel D 2000 J. Chem. Phys. 112 10034
[15] Donev A, Burton J, Stillinger F H and Torquato S 2006 Phys. Rev. B 73 054109
[16] Huang C, Viner J, Pindak R and Goodby J 1981 Phys. Rev. Lett. 46 1289
[17] Zahn K, Lenke R and Maret G 1999 Phys. Rev. Lett. 82 2721
[18] Zahn K and Maret G 2000 Phys. Rev. Lett. 85 3656
[19] Bernard E P and Krauth W 2011 Phys. Rev. Lett. 107 155704
[20] Frydel D and Rice S A 2003 Phys. Rev. E 68 061405
[21] Han Y, Ha N Y, Alsayed A M and Yodh A G 2008 Phys. Rev. E 77 041406
[22] Engel M, Anderson J A, Glotzer S C, Isobe M, Bernard E P and Krauth W 2013 Phys. Rev. E 87 042134
[23] Eisenmann C, Gasser U, Keim P and Maret G 2004 Phys. Rev. Lett. 93 105702
[24] Qi W, Gantapara A P and Dijkstra M 2014 Soft Matter 10 5449
[25] Kapfer S C and Krauth W 2015 Phys. Rev. Lett. 114 035702
[26] Li B, Wang F, Zhou D, et al. 2016 Nature 531 485
[27] Zu M, Liu J, Tong H and Xu N 2016 Phys. Rev. Lett. 117 085702
[28] Anderson J A, Antonaglia J, Millan J A, Engel M and Glotzer S C 2017 Phys. Rev. X 7 021001
[29] Zhao K and Mason T G 2018 Rep. Prog. Phys. 81 126601
[30] Li Y W and Ciamarra M P 2020 Phys. Rev. Lett. 124 218002
[31] Shen W, Antonaglia J, Anderson J A, Engel M, van Anders G and Glotzer S C 2019 Soft Matter 15 2571
[32] Avendaño C and Escobedo F A 2012 Soft Matter 8 4675
[33] Pineros W D, Baldea M and Truskett T M 2016 J. Chem. Phys. 145 054901
[34] Kryuchkov N P, Yurchenko S O, Fomin Y D, Tsiok E N and Ryzhov V N 2018 Soft Matter 14 2152
[35] Kim J, Kim C and Sung B J 2013 Phys. Rev. Lett. 110 047801
[36] Armstrong A J, Mockler R and O'Sullivan W 1989 J. Phys.: Condens. Matter 1 1707
[37] Fomin Y D, Gaiduk E A, Tsiok E N and Ryzhov V N 2018 Mol. Phys. 116 3258
[38] Hou Z, Zong Y, Sun Z, Ye F, Mason T G and Zhao K 2020 Nat. Commun. 11 2064
[39] Zhao K and Mason T G 2015 Proc. Natl. Acad. Sci. USA 112 12063
[40] Wang P Y and Mason T G 2018 Nature 561 94
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!