Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Understanding the battery safety improvement enabled by a quasi-solid-state battery design |
Luyu Gan(甘露雨)1,2,3, Rusong Chen(陈汝颂)1,2,3, Xiqian Yu(禹习谦)1,2,3,†, and Hong Li(李泓)1,2,3,‡ |
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China |
|
|
Abstract The rapid development of lithium-ion batteries (LIBs) is faced with challenge of its safety bottleneck, calling for design and chemistry innovations. Among the proposed strategies, the development of solid-state batteries (SSBs) seems the most promising solution, but to date no practical SSB has been in large-scale application. Practical safety performance of SSBs is also challenged. In this article, a brief review on LIB safety issue is made and the safety short boards of LIBs are emphasized. A systematic safety design in quasi-SSB chemistry is proposed to conquer the intrinsic safety weak points of LIBs and the effects are accessed based on existing studies. It is believed that a systematic and targeted solution in SSB chemistry design can effectively improve the battery safety, promoting larger-scale application of LIBs.
|
Received: 27 June 2022
Revised: 07 September 2022
Accepted manuscript online: 15 September 2022
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.60.-s
|
(Chemical thermodynamics)
|
|
87.15.R-
|
(Reactions and kinetics)
|
|
82.33.Pt
|
(Solid state chemistry)
|
|
Fund: roject supported by the National Key Research and Development Program of China (Grant No. 2021YFB2500300). |
Corresponding Authors:
Xiqian Yu, Hong Li
E-mail: xyu@iphy.ac.cn;hli@iphy.ac.cn
|
Cite this article:
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓) Understanding the battery safety improvement enabled by a quasi-solid-state battery design 2022 Chin. Phys. B 31 118202
|
[1] Nishi Y 2001 Chem. Rec. 1 406 [2] Feng X, Ren D, He X and Ouyang M 2020 Joule 4 743 [3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 [4] Bak S M, Hu E Y, Zhou Y N, Yu X Q, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Interfaces 6 22594 [5] Huang Q, Ma L, Liu A, Ma X W, Li J, Wang J and Dahn J R 2018 J. Power Sources 390 78 [6] Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G L, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K and Ouyang M G 2021 Nano Energy 85 105878 [7] Mizuno F, Yada C and Iba H 2014 Lithium-Ion Batteries (Amsterdam: Elsevier) p. 273 [8] Yoshino A 2012 Angew. Chem. Int. Ed. 51 5798 [9] Dahn J R, Fuller E W, Obrovac M and Vonsacken U 1994 Solid State Ion. 69 265 [10] Zhang Z, Fouchard D and Rea J R 1998 J. Power Sources 70 16 [11] Maleki H, Deng G P, Anani A and Howard J 1999 J. Electrochem. Soc. 146 3224 [12] Biensan P, Simon B, Peres J P, de Guibert A, Broussely M, Bodet J M and Perton F 1999 J. Power Sources 81-82 906 [13] Lisbona D and Snee T 2011 Process Saf. Environ. Protect. 89 434 [14] Spotnitz R and Franklin J 2003 J. Power Sources 113 81 [15] MacNeil D D and Dahn J R 2001 J. Electrochem. Soc. 148 A1205 [16] Li Y, Feng X, Ren D, Ouyang M and Han X 2019 ACS Appl. Mater. Interfaces 11 46839 [17] Maleki H and Howard J N 2009 J. Power Sources 191 568 [18] Finegan D P, Tjaden B, Heenan T M M, Jervis R, Di Michiel M, Rack A, Hinds G, Brett D J L and Shearing P R 2017 J. Electrochem. Soc. 164 A3285 [19] Li Y, Gao X, Feng X, Ren D, Li Y, Hou J, Wu Y, Du J, Lu L and Ouyang M 2022 Energy 239 122097 [20] Wang Q, Mao B, Stoliarov S I and Sun J 2019 Prog. Energy Combust. Sci. 73 95 [21] Manthiram A, Yu X W and Wang S F 2017 Nat. Rev. Mater. 2 16103 [22] Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X and Yao X 2021 Electrochem. Energy Rev. 4 101 [23] Yao X, Huang B, Yin J Y, Peng G, Huang Z, Gao C, Liu D and Xu X 2016 Chin. Phys. B 25 18802 [24] Chen R S, Li Q H, Yu X Q, Chen L Q and Li H 2020 Chem. Rev. 120 6820 [25] Li H and Xu X X 2016 Energy Storage Science and Technology 5 607 [26] Inoue T and Mukai K 2017 ACS Appl. Mater. Interfaces 9 1507 [27] Bates A M, Preger Y, Torres-Castro L, Harrison K L, Harris S J and Hewson J 2022 Joule 6 742 [28] Whittingham M S 2004 Chem. Rev. 104 4271 [29] Noh H J, Youn S, Yoon C S and Sun Y K 2013 J. Power Sources 233 121 [30] Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J and Dahn J R 2019 J. Electrochem. Soc. 166 A2826 [31] Deng Y M, Kang T X, Ma Z, Tan X X, Song X N, Wang Z, Pang P P, Shu D, Zuo X X and Nan J M 2019 Electrochim. Acta 295 703 [32] Lipson A L, Durham J L, LeResche M, Abu-Baker I, Murphy M J, Fister T T, Wang L X, Zhou F, Liu L, Kim K and Johnson D 2020 ACS Appl. Mater. Interfaces 12 18512 [33] Yu J P, Han Z H, Hu X H, Zhan H, Zhou Y H and Liu X J 2013 J. Power Sources 225 34 [34] Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J and Dahn J R 2019 J. Electrochem. Soc. 166 A2826 [35] Zhang J N, Li Q H, Ouyang C Y, Yu X Q, Ge M Y, Huang X J, Hu E Y, Ma C, Li S F, Xiao R J, Yang W L, Chu Y, Liu Y J, Yu H G, Yang X Q, Huang X J, Chen L Q and Li H 2019 Nat. Energy 4 594 [36] Li H, Wang Z X, Chen L Q and Huang X J 2009 Adv. Mater. 21 4593 [37] Cho J, Kim Y J and Park B 2000 Chem. Mater. 12 3788 [38] Liu L J, Wang Z X, Li H, Chen L Q and Huang X J 2002 Solid State Ion. 152-153 341 [39] Cho J 2003 Electrochem. Commun. 5 146 [40] Ohta N, Takada K, Zhang L Q, Ma R Z, Osada M and Sasaki T 2006 Adv. Mater. 18 2226 [41] Ohta N, Takada K, Sakaguchi I, Zhang L Q, Ma R Z, Fukuda K, Osada M and Sasaki T 2007 Electrochem. Commun. 9 1486 [42] Kim H S, Oh Y, Kang K H, Kim J H, Kim J and Yoon C S 2017 ACS Appl. Mater. Interfaces 9 16063 [43] Shim J H, Han J M, Lee J H and Lee S 2016 ACS Appl. Mater. Interfaces 8 12205 [44] Morimoto H, Awano H, Terashima J, Shindo Y, Nakanishi S, Ito N, Ishikawa K and Tobishima S I 2013 J. Power Sources 240 636 [45] Wang Y, Zhang Q H, Xue Z C, Yang L F, Wang J Y, Meng F Q, Li Q H, Pan H Y, Zhang J N, Jiang Z, Yang W L, Yu X Q, Gu L and Li H 2020 Adv. Energy Mater. 10 2001413 [46] Vijayakumar V, Anothumakkool B, Kurungot S, Winter M and Nair J R 2021 Energy Environ. Sci. 14 2708 [47] Liu T T, Zhang J J, Han W, Zhang J N, Ding G L, Dong S M and Cui G L 2020 J. Electrochem. Soc. 167 070527 [48] Nagarajan S, Weiland C, Hwang S, Balasubramanian M and Arava L M R 2022 Chem. Mater. 34 4587 [49] Wu Y, Feng X N, Liu X, Wang X F, Ren D S, Wang L, Yang M, Wang Y L, Zhang W F, Li Y L, Zheng Y J, Lu L G, Han X B, Xu G L, Ren Y, Chen Z H, Chen J T, He X M, Amine K and Ouyang M G 2021 Energy Storage Mater. 43 248 [50] Lu J Z, Zhou J H, Chen R S, Fang F, Nie K H, Qi W B, Zhang J N, Yang R Z, Yu X Q, Li H, Chen L Q and Huang X J 2020 Energy Storage Mater. 32 191 [51] Wang J, Chen R, Yang L, Zan M, Chen P, Li Y, Li W, Yu H, Yu X, Huang X, Chen L and Li H 2022 Adv. Mater. 34 2200655 [52] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H and Zhang M 2014 J. Power Sources 255 294 [53] Li W W, Sun C Z, Jin J, Li Y P, Chen C H and Wen Z Y 2019 J. Mater. Chem. A 7 27304 [54] Zhang J J, Zang X, Wen H J, Dong T T, Chai J C, Li Y, Chen B B, Zhao J W, Dong S M, Ma J, Yue L P, Liu Z H, Guo X X, Cui G L and Chen L Q 2017 J. Mater. Chem. A 5 4940 [55] Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L and Chen L Q 2015 Adv. Energy Mater. 5 1501082 [56] Jung K N, Shin H S, Park M S and Lee J W 2019 ChemElectroChem 6 3842 [57] Wang L P, Zhang X D, Wang T S, Yin Y X, Shi J L, Wang C R and Guo Y G 2018 Adv. Energy Mater. 8 1801528 [58] Abels G, Bardenhagen I, Schwenzel J and Langer F 2022 J. Electrochem. Soc. 169 020560 [59] Yang L F, Zhang J, Xue W R, Li J Z, Chen R S, Pan H Y, Yu X Q, Liu Y J, Li H, Chen L Q and Huang X J 2022 Adv. Funct. Mater. 32 2200096 [60] Li S, Lu J Z, Geng Z, Chen Y, Yu X Q, He M and Li H 2022 Appl. Mater. Interfaces 14 1195 [61] Yan Z, Pan H Y, Wang J Y, Chen R S, Li Q, Luo F, Yu X Q and Li H 2021 Rare Met. 40 1357 [62] Chen R, Nolan A M, Lu J, Wang J, Yu X, Mo Y, Chen L, Huang X and Li H 2020 Joule 4 812 [63] Wu J, Liu S, Han F, Yao X and Wang C 2021 Adv. Mater. 33 2000751 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|