Abstract Exploring low-cost and high-performance catalysts for oxygen evolution reaction (OER) remains to be a great challenge. Iridium-based perovskite oxide has large potential in OER because of its intrinsic activity and outstanding physicochemical properties. In this study, iridium-doped strontium titanate (Ir-STO) solution is brushed on a Ti sheet by the traditional method to obtain the Ir-STO/Ti electrodes after being calcined at a high temperature. The microstructure and electrocatalysis properties of the Ir-STO are further modified by a facile and scalable NH3-plasma strategy. In addition to the doping of Ir, the NH3 plasma treatment further results in N-doping into Ir-STO, which enriches active species and causes oxygen vacancies near doped sites. The resulting N, Ir-STO/Ti electrode reveals excellent acidic OER activity with the lowest overpotential of 390 mV at 10 mA/cm2 and the smallest Tafel slope of 140 mV/dec after 10-min plasma treatment. Therefore, the great potential of activated N, Ir-STO/Ti is regarded as a catalyst for the OER, and thus making a new opportunity for developing other perovskite catalysts via NH3 plasma treatment.
(Effects of crystal defects, doping and substitution)
Fund: Project supported by the Priority Academic Program Development (PAPD) Program of Jiangsu Higher Education Institutions, Jiangsu Province, China and the National Natural Science Foundation of China (Grant No. 11675117).
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜) Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment 2022 Chin. Phys. B 31 118201
[1] Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S and Nocera D G 2010 Chem. Rev.110 6474 [2] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A and Lewis N S 2010 Chem. Rev.110 6446 [3] Nathan S L 2006 Proc. Natl. Acad. Sci. USA103 15729 [4] Cao H, Chen M, Wu L, Hou G, Tang Y and Zheng G 2017 Appl. Surf. Sci.428 861 [5] Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y and Qiao S Z 2019 Chem5 445 [6] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J and Chen H M 2017 Chem. Soc. Rev.46 337 [7] Lv H, Wang S, Li J, Shao C, Zhou W, Shen X, Xue M and Zhang C 2020 Appl. Surf. Sci.514 145943 [8] Reier T, Oezaslan M and Strasser P 2012 ACS Cata.2 1765 [9] Xu H, Shi Z X, Tong Y X and Li G R 2018 Adv. Mater.30 1705442 [10] Suntivich J, May K J, Gasteiger H A, Goodenough J B and Shao Horn Y 2011 Science334 1383 [11] Hardin W G, Mefford J T, Slanac D A, Patel B B, Wang X, Dai S, Zhao X, Ruoff R S, Johnston K P and Stevenson K J 2014 Chem. Mater.26 3368 [12] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B22 057201 [13] Seitz Linsey C, Dickens Colin F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang Harold Y, Norskov Jens K and Jaramillo Thomas F 2016 Science353 1011 [14] Jin C, Cao X, Zhang L, Cong Z and Yang R 2013 J. Power Sources241 225 [15] Ji Q, Bi L, Zhang J, Cao H and Zhao X S 2020 Int. J. Hydrogen Energy45 12514 [16] Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zhang Q, Li G D, Yang L and Zou X 2019 Angew. Chem. Int. Ed. Engl.58 7631 [17] Badreldin A, Abusrafa A E and Abdel-Wahab A 2020 Emergent Mater.3 567 [18] Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P and Stevenson K J 2016 Nat. Commun.7 11053 [19] She S, Yu J, Tang W, Zhu Y, Chen Y, Sunarso J, Zhou W and Shao Z 2018 ACS Appl. Mater. Interfaces10 11715 [20] Sun B, He D, Wang H, Liu J, Ke Z, Cheng L and Xiao X 2021 Chin. Phys. B30 106102 [21] Liu X, Zhang L, Zheng Y, Guo Z, Zhu Y, Chen H, Li F, Liu P, Yu B, Wang X, Liu J, Chen Y and Liu M 2019 Adv. Sci.6 1801898 [22] Wang Z, Zhang Y, Neyts E C, Cao X, Zhang X, Jang B W L and Liu C 2018 ACS Catal.8 2093 [23] Lu Y, Ma A, Yu Y, Tan R, Liu C, Zhang P, Liu D and Gui J 2018 ACS Sustain. Chem. Eng.7 2906 [24] Ran J, Wang T, Zhang J, Liu Y, Xu C, Xi S and Gao D 2020 Chem. Mater.32 3439 [25] Xiong J, Zhong H, Li J, Zhang X, Shi J, Cai W, Qu K, Zhu C, Yang Z, Beckman S P and Cheng H 2019 Appl. Catal. B: Environ.256 117817 [26] Fuertes A 2012 J. Mater. Chem.22 3293 [27] Fuertes A 2015 Mater. Horiz.2 453 [28] Marlec F, Le Paven C, Le Gendre L, Benzerga R, Cheviré F, Tessier F, Gam F and Sharaiha A 2017 Surf. Coat. Technol.324 607 [29] Liu Y, Wang W, Xu X, Marcel Veder J P and Shao Z 2019 J. Mater. Chem.7 7280 [30] Zhang J, Zhang C, Li W, Guo Q, Gao H, You Y, Li Y, Cui Z, Jiang K C, Long H, Zhang D and Xin S 2018 ACS Appl. Mater. Interfaces10 5543 [31] Lee Y, Suntivich J, May K J, Perry E E and Shao H Y 2012 J. Phys. Chem. Lett.3 399 [32] Husein I F, Qin S, Zhou Y Z and Chan C 1997 Nucl. Instrum. Method B121 226 [33] Yu L, Bati A, Grace T, Batmunkh M and Shapter J 2019 Adv. Energy Mater.9 1901063 [34] Pansila P P, Kanomata K, Ahmmad B, Kubota S and Hirose F 2015 IEICE T Electron.E98-C 395 [35] Zhao J, Lu G, Wu Y, Zhang P, Yue J, Cheng Z, Zhang J and Kang X 2020 Colloid. Surface A603 125254 [36] Lan C K, Chuang S I, Bao Q, Liao Y T and Duh J G 2015 J. Power Sources275 660 [37] Tan X, Chen C, Jin K and Luo B 2011 J. Alloys Compd.509 L311 [38] Shi X, Zhu H, Du J, Cao L, Wang X and Liang H P 2021 Electrochimica Acta370 137710 [39] Liu C M, Zu X T and Zhou W L 2007 J. Phys. D: Appl. Phys.40 7318 [40] Yang X, Zhao F, Yeh Y W, Selinsky R S, Chen Z, Yao N, Tully C G, Ju Y and Koel B E 2019 Nat. Commun.10 1543 [41] Chen Q, Ozkan A, Chattopadhyay B, Baert K, Poleunis C, Tromont A, Snyders R, Delcorte A, Terryn H and Delplancke Ogletree M P 2019 Langmuir35 7161 [42] Yu J, Wu X, Guan D, Hu Z, Weng S C, Sun H, Song Y, Ran R, Zhou W, Ni M and Shao Z 2020 Chem. Mater.32 4509 [43] Anantharaj S, Karthik P E and Kundu S 2015 J. Mater. Chem. A3 24463 [44] Guo Y, Wang T, Chen J, Zheng J, Li X and Ostrikov K 2018 Adv. Energy Mater.8 1800085 [45] Li Z, Lv L, Wang J, Ao X, Ruan Y, Zha D, Hong G, Wu Q, Lan Y, Wang C, Jiang J and Liu M 2018 Nano Energy47 199 [46] He T, Zeng X and Rong S 2020 J. Mater. Chem. A8 8383 [47] Zhang Y Q, Tao H B, Chen Z, Li M, Sun Y F, Hua B and Luo J L 2019 J. Mater. Chem. A7 26607 [48] Xinghua C, Lv M, Jin S, Wang H, Chen Y, Ma T, Cui K, Li J, Yong W, Liu Z, Guo Y, Liu Z and Li X 2020 Catal. Sci. Technol.10 4786 [49] Ma X, Zhou Y, Cao L, Wang K, Deng L, Fan R and Xin Y 2020 Surf. Coat. Technol.396 125961 [50] Liu Y, Liang X, Chen H, Gao R, Shi L, Yang L and Zou X 2021 Chin. J. Catal.42 1054 [51] Beknalkar S A, Teli A M, Harale N S, Patil D S, Pawar S A, Shin J C and Patil P S 2021 Appl. Surf. Sci.546 149102 [52] Xu L K and Scantlebury J D 2003 Corros. Sci.45 2729 [53] Hu M J, Meng M H, Zhang Q J and N C 2002 Corros. Sci.44 1655 [54] Zhou X, Zhou J, Huang G, Fan R, Ju S, Mi Z and Shen M 2018 J. Mater. Chem. A6 20297 [55] Lü G H, Chen H, Wang X Q, Pang H, Zhang G L, Zou B, Lee H J and Yang S Z 2010 Chin. Phys. B19 085202 [56] Shieh D T and Hwang B J 1993 Electrochimica Acta38 2239 [57] Da Silva L M, Fernandes K C, De Faria L A and Boodts J F C 2004 Electrochimica Acta49 4893 [58] Da Silva L M, De Faria L A and Boodts J F C 2002 J. Electroanal. Chem.532 141 [59] Liu C W, Xu J P, Liu L and Lu H H 2015 Chin. Phys. B24 127304 [60] Haynes W M 2014 CRC handbook of chemistry and physics, 95th edn. (New York: CRC Press) pp. 1603-1613
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.