INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Designing current-strain-assisted superconductor-ferromagnet multi-bit memories |
Hasnain Mehdi Jafri1,2, Jing Wang(王静)1,2, Xiao-Ming Shi(施小明)1,2, De-Shan Liang(梁德山)1,2, and Hou-Bing Huang(黄厚兵)1,2,† |
1 School of Materials Science&Engineering, Beijing Institute of Technology, Beijing 100081, China; 2 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Current superconducting memory devices lack the basic quality of high memory density for practical memories, mainly due to the size limitations of superconducting quantum interference devices. Here, we propose a superconductor-ferromagnet bilayer device with strain-pulse-assisted multi-bit ladder-type memory, by using strain-engineered ferromagnet domain structure to control carrier concentration in the superconductor, which is simulated by coupled Landau-Lifshitz-Gilbert and Ginzburg-Landau equations. Current- and strain-pulses are observed to deterministically control the resistivity of superconductor for one and two-bit device arrangements. The average carrier concentration of superconductor is observed to have multiple metastable states that can be controllably switched using current-pulse and strain-pulse to determine multiple resistivity states. These findings confirm the eligibility of superconductor-ferromagnet bilayers to be used as ladder-type multibit memories and open a new way for further theoretical and experimental investigations of the cryogenic memories.
|
Received: 14 March 2022
Revised: 30 June 2022
Accepted manuscript online: 05 July 2022
|
PACS:
|
74.20.De
|
(Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))
|
|
74.25.Uv
|
(Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project sponsored by the National Natural Science Foundation of China (Grant Nos. 52150410420 and 51972028) and the National Key Research and Development Program of China (Grant No. 2019YFA0307900). |
Corresponding Authors:
Hou-Bing Huang
E-mail: hbhuang@bit.edu.cn
|
Cite this article:
Hasnain Mehdi Jafri, Jing Wang(王静), Xiao-Ming Shi(施小明), De-Shan Liang(梁德山), and Hou-Bing Huang(黄厚兵) Designing current-strain-assisted superconductor-ferromagnet multi-bit memories 2022 Chin. Phys. B 31 118501
|
[1] Holmes D S, Ripple A L and Manheimer M A 2013 IEEE Trans. Appl. Supercond. 23 1701610 [2] Manheimer M A 2015 IEEE Trans. Appl. Supercond. 25 1 [3] Rowlands G, Ryan C, Ye L, Rehm L, Pinna D, Kent A and Ohki T 2019 Sci. Rep. 9 1 [4] Rehm L, Sluka V, Rowlands G E, Nguyen M-H, Ohki T A and Kent A D 2019 Appl. Phys. Lett. 114 212402 [5] Guarcello C and Bergeret F 2020 Phys. Rev. Appl. 13 034012 [6] Rowlands G E, Nguyen M H, Aradhya S V, Shi S, Ryan C A, Buhrman R A and Ohki T A 2019 arXiv preprint arXiv: 1909.10613 [7] Golod T, Iovan A and Krasnov V M 2015 Nat. Commun. 6 1 [8] Niedzielski B M, Bertus T, Glick J A, Loloee R, Pratt Jr W and Birge N O 2018 Phys. Rev. B 97 024517 [9] Baek B, Rippard W H, Benz S P, Russek S E and Dresselhaus P D 2014 Nat. Commun. 5 1 [10] Van Duzer T, Feng Y, Meng X, Whiteley S R and Yoshikawa N 2002 Supercond. Sci. Technol. 15 1669 [11] Kirichenko A F, Sarwana S, Brock D K and Radpavar M 2001 IEEE Trans. Appl. Supercond. 11 537 [12] Semenov V K, Polyakov Y A and Tolpygo S K 2019 IEEE Trans. Appl. Supercond. 20 591 [13] Ghoshal U, Kroger H and Van Duzer T 1993 IEEE Trans. Appl. Supercond. 3 2315 [14] Dayton I M, Sage T, Gingrich E C, Loving M G, Ambrose T F, Siwak N P, Keebaugh S, Kirby C, Miller D L and Herr A Y 2018 IEEE Magn. Lett. 9 1 [15] Shafraniuk S E, Nevirkovets I P and Mukhanov O A 2019 Phys. Rev. Appl. 11 064018 [16] Golod T, Hovhannisyan R A, Kapran O M, Dremov V V, Stolyarov V S and Krasnov V M 2021 Nano Lett. [17] Kim K, Ozmetin A, Naugle D and Lyuksyutov I 2010 Appl. Phys. Lett. 97 042501 [18] Bartolomé E, Cayado P, Solano E, Mocuta C, Ricart S, Mundet B, Coll M, Gázquez J, Meledin A and Van Tendeloo G 2017 Adv. Electron. Mater. 3 1700037 [19] Hoffmann A, Prieto P, Metlushko V and Schuller I K 2012 J. Supercond. Novel Magnet. 25 2187 [20] Kapra A, Misko V and Peeters F 2012 Supercond. Sci. Technol. 26 025011 [21] Aladyshkin A Y, Fritzsche J and Moshchalkov V 2009 Appl. Phys. Lett. 94 222503 [22] Vlasko-Vlasov V, Welp U, Karapetrov G, Novosad V, Rosenmann D, Iavarone M, Belkin A and Kwok W-K 2008 Phys. Rev. B 77 134518 [23] Silhanek A, Gillijns W, Moshchalkov V, Metlushko V and Ilic B 2006 Appl. Phys. Lett. 89 182505 [24] Palermo X, Reyren N, Mesoraca S, Samokhvalov A, Collin S, Godel F, Sander A, Bouzehouane K, Santamaria J and Cros V 2020 Phys. Rev. Appl. 13 014043 [25] Dahir S M, Volkov A F and Eremin I M 2019 Phys. Rev. Lett. 122 097001 [26] Jafri H M, Ma X, Huang H, Zhao C, Qazi H I A, Kazmi S B F, Liu Z, Liu L, Shi S Q and Li Y 2019 Supercond. Sci. Technol. 32 095002 [27] Yagovtsev V, Pugach N and Eschrig M 2020 Superconductor Science and Technology [28] Zhang J and Chen L 2005 Acta Materialia 53 2845 [29] Huang H, Ma X, Liu Z, Zhao C, Shi S and Chen L 2013 Appl. Phys. Lett. 102 042405 [30] GoR'Kov L P and Eliashberg G M 1968 Sov. J. Exp. Theor. Phys. 27 328 [31] Du Q, Gunzburger M D and Peterson J S 1995 Phys. Rev. B 51 16194 [32] Jafri H M, Huang H, Yang C, Wang J, Amirov A, Chen L Q and Nan C W 2020 J. Phys. D: Appl. Phys. [33] Zehetmayer M 2013 Supercond. Sci. Technol. 26 043001 [34] Du Q, Nicolaides R and Wu X 1998 SIAM J. Numer. Anal. 35 1049 [35] Du Q, Gunzburger M D and Peterson J S 1992 Siam Review 34 54 [36] Gropp W D, Kaper H G, Leaf G K, Levine D M, Palumbo M and Vinokur V M 1996 J. Comput. Phys. 123 254 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|