Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104203    DOI: 10.1088/1674-1056/ac6868
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere

Xiao-Zhuo Qi(祁晓卓)1,2, and Xi-Feng Ren(任希锋)1,2,†
1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2. CAS Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Monolayer transition metal dichalcogenides (TMDs) are widely used for integrated optical and photoelectric devices. Owing to their broken inversion symmetry, monolayer TMDs have a large second-order optical nonlinearity. However, the optical second-order nonlinear conversion efficiency of monolayer TMDs is still limited by the interaction length. In this work, we theoretically study the second harmonic generation (SHG) from monolayer tungsten sulfide (WS2) enhanced by a silica microsphere cavity. By tuning the position, size, and crystal orientation of the material, second-order nonlinear coupling can occur between the fundamental pump mode and different second harmonic cavity modes, and we obtain an optimal SHG conversion efficiency with orders of magnitude enhancement. Our work demonstrates that the microsphere cavity can significantly enhance SHG from monolayer 2D materials under flexible conditions.
Keywords:  integrated optics      frequency conversion  
Received:  01 March 2022      Revised:  11 April 2022      Accepted manuscript online: 
PACS:  42.82.-m (Integrated optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774333 and 62061160487) and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Xi-Feng Ren     E-mail:  renxf@ustc.edu.cn

Cite this article: 

Xiao-Zhuo Qi(祁晓卓), and Xi-Feng Ren(任希锋) Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere 2022 Chin. Phys. B 31 104203

[1] Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128
[2] Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447
[3] Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C, Guo G C, Ren X F and Guo G P 2016 Opt. Express 24 27554
[4] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302
[5] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[6] Zhou L, Fu H, Lv T, Wang C, Gao H, Li D, Deng L and Xiong W 2020 Nanomaterials 10 2263
[7] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963
[8] Ribeiro-Soares J, Janisch C, Liu Z, Elías A L, Dresselhaus M S, Terrones M, Cançado L G and Jorio A 2015 2D Mater. 2 045015
[9] Zhao M, Ye Z, Suzuki R, Ye Y, Zhu H, Xiao J, Wang Y, Iwasa Y and Zhang X 2016 Light Sci. Appl. 5 e16131
[10] Jiang H, Zheng L, Wang J, Xu M, Gan X, Wang X and Hang W 2021 Nanoscale 13 18103
[11] Janisch C, Wang Y, Ma D, Metha N, Elías A L, Perea-López N, Terrones M, Crespi V and Liu Z 2014 Sci. Rep. 4 5530
[12] Liu N, Yang X, Zhu Z, Chen F, Zhou Y, Xu J and Liu K 2022 Nanoscale 14 49
[13] Chen H, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, Ceglia D, Angelis C, Lu Y and Neshev D N 2017 Light Sci. Appl. 6 e17060
[14] Zuo Y, Yu W, Liu C, Chen X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X and Liu Z 2020 Nature Nanotech. 15 987
[15] Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J and Shen Y R 2014 Nano Lett. 14 955
[16] Chen J, Tan J, Wu G, Zhang X, Xu F and Lu Y 2019 Light Sci. Appl. 8 1
[17] Tan T, Yuan Z, Zhang H, Yan G, Zhou S, An N, Peng B, Soavi G, Rao Y and Yao B 2021 Nat. Commun. 12 6716
[18] Li X, Liu W, Song Y, Zhang C, Long H, Wang K, Wang B and Lu P 2019 Adv. Opt. Mater. 7 1801270
[19] Liu D, Qi X Z, Chiu K L, Taniguchi T, Ren X F and Guo G P 2018 Chin. Phys. B 27 087303
[20] Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y and Zhang X 2015 Nat. Photon. 9 733
[21] Qi X, Lo T W, Liu D, Feng L, Chen Y, Wu Y, Ren H, Guo G C, Lei D Y and Ren X F 2020 Nanophotonics 9 2097
[22] Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K L, Lee P S and Shen Z 2014 Small 10 1090
[23] Akselrod G M, Ming T, Argyropoulos C, Hoang T B, Lin Y, Ling Xi, Smith D R, Kong J and Mikkelsen M H 2015 Nano Lett. 15 3578
[24] Zheng D, Zhang S, Deng Q, Kang M, Nordlander P and Xu H 2017 Nano Lett. 17 3809
[25] Wu Y, Liu X, Qi X, Lu L, Guo G, Guo G C and Ren X F 2021 Appl. Phys. Lett. 118 104002
[26] Liu C P, Zhu X L, Zhang J S, Xu J, Wang Y M and Yu D P 2016 Chin. Phys. B 33 087303
[27] Wang H, Wen J, Wang W, Xu N, Liu P, Yan J, Chen H and Deng S 2019 ACS Nano 13 1739
[28] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A and Xu X 2015 Nature 520 69
[29] Zhang L, Gogna R, Burg W, Tutuc E and Deng H 2018 Nat. Commun. 9 713
[30] Hu G, Hong X, Wang K, Wu J, Xu H X, Zhao W, Liu W, Shuang Z, Garcia-Vidal, Wang B, Lu P and Qiu C W 2019 Nat. Photon. 13 467
[31] Chen J, Wang K, Long H, Han X, Hu H, Liu W, Wang B and Lu P 2018 Nano Lett. 18 1344
[32] Liu Z, Wang J, Chen B, Wei Y, Liu W and Liu J 2021 Nano Lett. 21 7405
[33] Shi J, Liang W Y, Raja S S, Sang Y, Zhang X Q, Chen C A, Wang Y, Yang X, Lee Y H, Ahn H and Gwo S 2018 Laser Photon. Rev. 12 1800188
[34] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657
[35] Guo X, Zou C L and Tang H X 2016 Optica 3 1126
[36] Zhang X, Cao Q T, Wang Z, Liu Y, Qiu C W, Yang L, Gong Q and Xiao Y F 2019 Nat. Photon. 13 21
[1] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[2] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[3] Standing-wave spectrometry in silicon nano-waveguides using reflection-based near-field scanning optical microscopy
Yi-Zhi Sun(孙一之), Wei Ding(丁伟), Bin-Bin Wang(王斌斌), Rafael Salas-Montiel, Sylvain Blaize, Renaud Bachelot, Zhong-Wei Fan(樊仲维), Li-Shuang Feng(冯丽爽). Chin. Phys. B, 2019, 28(1): 010702.
[4] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[5] β-BaB2O4 with special cut-angle applied to single crystal cascaded third-harmonic generation
Hong-Kai Ren(任宏凯), Hong-Wei Qi(亓宏伟), Zheng-Ping Wang(王正平), Zhi-Xin Wu(吴志心), Meng-Xia Wang(王梦霞), Yu-Xiang Sun(孙玉祥), Xun Sun(孙洵), Xin-Guang Xu(许心光). Chin. Phys. B, 2018, 27(11): 114202.
[6] Tunable optical filter using second-order micro-ring resonator
Lin Deng(邓林), Dezhao Li(李德钊), Zilong Liu(刘子龙), Yinghao Meng(孟英昊), Xiaonan Guo(郭小男), Yonghui Tian(田永辉). Chin. Phys. B, 2017, 26(2): 024209.
[7] All polymer asymmetric Mach-Zehnder interferometer waveguide sensor by imprinting bonding and laser polishing
Yu Liu(刘豫), Yue Sun(孙月), Yun-Ji Yi(衣云骥), Liang Tian(田亮), Yue Cao(曹悦), Chang-Ming Chen(陈长鸣), Xiao-Qiang Sun(孙小强), Da-Ming Zhang(张大明). Chin. Phys. B, 2017, 26(12): 124215.
[8] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[9] Quantum frequency doubling based on tripartite entanglement with cavities
Juan Guo(郭娟), Zhi-Feng Wei(魏志峰), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(2): 020302.
[10] Cascade correlation-enhanced Raman scattering in atomic vapors
Hong-Mei Ma(马红梅), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华). Chin. Phys. B, 2016, 25(12): 124206.
[11] Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave
Xiong-Hua Zheng(郑雄桦), Bao-Fu Zhang(张宝夫), Zhong-Xing Jiao(焦中兴), Biao Wang(王彪). Chin. Phys. B, 2016, 25(1): 014208.
[12] Multiple frequency conversion via atomic spin coherence of storing a light pulse
Wang Lei (王磊), Luo Meng-Xi (罗梦希), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Chen Yi (陈怡), Wei Xiao-Gang (魏小刚), Kang Zhi-Hui (康智慧), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(6): 064205.
[13] High-speed and broad optical bandwidth silicon modulator
Xu Hao (徐浩), Li Xian-Yao (李显尧), Xiao Xi (肖希), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2013, 22(11): 114212.
[14] A compact in-plane photonic crystal channel drop filter
Zhao Yi-Nan(赵铱楠), Li Ke-Zheng(李科铮), Wang Xue-Hua(王雪华), and Jin Chong-Jun (金崇君). Chin. Phys. B, 2011, 20(7): 074210.
[15] CMOS compatible highly efficient grating couplers with a stair-step blaze profile
Zhou Liang(周亮), Li Zhi-Yong(李智勇), Hu Ying-Tao(胡应涛), Xiong Kang(熊康), Fan Zhong-Chao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De (俞育德), and Yu Jin-Zhong (余金中) . Chin. Phys. B, 2011, 20(7): 074212.
No Suggested Reading articles found!