Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114210    DOI: 10.1088/1674-1056/27/11/114210
Special Issue: TOPICAL REVIEW — Nanolasers
TOPICAL REVIEW—Nanolasers Prev   Next  

Electrically pumped metallic and plasmonic nanolasers

Martin T Hill
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, 6009, Australia
Abstract  

In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped devices are advantageous for applications and could demonstrate concepts not amenable for optical pumping. However, there have been relatively few demonstrations of electrically pumped small metal cavity lasers. This lack of results is due to the following reasons:there are limited types of electrically pumped gain media available; there is a significantly greater level of complexity required in the fabrication of electrically pumped devices; finally, the required components for electrical pumping restrict cavity design options and furthermore make it intrinsically more difficult to achieve lasing. This review looks at the motivation for electrically pumped nanolasers, the key issues that need addressing for them to be realized, the results that have been achieved so far including devices where lasing has not been achieved, and potential new directions that could be pursued.

Keywords:  semiconductor lasers      laser diode      microcavity and microdisk laser      integrated optics  
Received:  24 April 2018      Revised:  30 May 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Sa (Microcavity and microdisk lasers)  
  42.82.-m (Integrated optics)  
Fund: 

Project supported by an Australian Research Council Future Fellowship Grant.

Corresponding Authors:  Martin T Hill     E-mail:  m.t.hill@ieee.org

Cite this article: 

Martin T Hill Electrically pumped metallic and plasmonic nanolasers 2018 Chin. Phys. B 27 114210

[1] Ma R M, Oulton R F, Sorger V J and Zhang X 2013 Laser Photon. Rev. 7 1
[2] Miller D A B 2009 Proc. IEEE 97 1166
[3] Smit M K, van der Tol J and Hill M T 2012 Laser Photon. Rev. 6 1
[4] Hill M T and Gather M C 2014 Nat. Photon. 8 908
[5] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[6] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[7] Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, Veldhoven P J, van Otten F W M, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, Notzel R and Smit M K 2007 Nat. Photon. 1 589
[8] Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y, Sun M, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Notzel R, Ning C Z and Smit M K 2009 Opt. Express 17 11107
[9] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[10] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[11] Nezhad M P, Simic A, Bondarenko O, Slutsky B, Mizrahi A, Feng F, Lomakin V and Fainman Y 2010 Nat. Photon. 4 395
[12] Yu K, Lakhani A and Wu M C 2010 Opt. Express 18 8790
[13] Perahia R, Alegre T P M, SafaviNaeini A H and Painter O 2009 Appl. Phys. Lett. 95 201114
[14] Kwon S H, Kang J H, Seassal C, Kim S K, Regreny P, Lee Y H, Lieber C M and Park H G 2010 Nano Lett. 10 3679
[15] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K and Gwo S 2012 Science 337 450
[16] Hayenga W E, GarciaGracia H, Hodaei H, Reimer C, Morandotti R, LiKamWa P and Khajavikhan M 2016 Optica 3 1187
[17] Bouillard J S G, Dickson W, O'Conner D P, Wurtz G A and Zayats A V 2012 Nano Lett. 12 1561
[18] Jayanti S V, Park J H, Dejneka A, Chvostova D, McPeak K M, Chen X, Oh S H and Norris D J 2015 Opt. Mater. Express 5 1147
[19] Takeda K, Sato T, Shinya A and Nozaki K 2013 Nat. Photon. 7 569
[20] Crosnier G, Sanchez D, Bouchoule S, Monnier P, Beaudoin G, Sagnes I, Raj R and Raineri F 2017 Nat. Photon. 11 297
[21] Zia R, Selker M D, Catrysse P B and Brongersma M L 2004 J. Opt. Soc. Am. A 21 2442
[22] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[23] Chang S W, Lin T R and Chuang S L 2010 Opt. Express 18 15039
[24] Mizrahi A, Lomakin V, Slutsky B A, Nezhad M P, Feng L and Fainman Y 2008 Opt. Lett. 33 1261
[25] GarciaBlanco S M, Pollnau M and Bozhevolnyi S I 2011 Opt. Express 19 25298
[26] De Leon I and Berini P 2010 Nat. Photon. 4 382
[27] Dang C, Lee J, Breen C, Steckel J S, CoeSullivan S and Nurmikko A 2012 Nat. Nanotechnol. 7 335
[28] Du W, Wang T, Chu H S and Nijhuis C A 2017 Nat. Photon. 11 623
[29] Cai W, Sainidou R, Xu J, Polman A and Javier Garcia de Abajo F 2009 Nano Lett. 9 1176
[30] Nezhad M P, Tetz K and Fainman Y 2004 Opt. Express 12 4072
[31] Baca A G, Ren F, Zolper J C, Briggs R D and Pearton S J 1997 Thin Solid Films 308 599
[32] Shen L, DoloresCalzadilla V, Wullems C W H A, Jiao Y, Millan-Mejia A, Higuera-Rodriguez A, Heiss D, van der Tol J J G M, Ambrosius H P M M, Roelkens G and Smit M K 2015 Opt. Mater. Express 5 393
[33] Kusunoki F, Yotsuya T, Takahara J and Kobayashi T 2005 Appl. Phys. Lett. 86 211101
[34] Kim M K, Lakhani A M and Wu M C 2011 Opt. Express 19 23504
[35] Lee J H, Khajavikhan M, Simic A, Gu Q, Bondarenko O, Slutsky B, Nezhad M P and Fainman Y 2011 Opt. Express 19 21524
[36] Marell M J H, Smalbrugge B, Geluk E J, van Veldhoven P J, Barcones B, Koopmans B, Notzel R, Smit M K and Hill M T 2011 Opt. Express 19 15109
[37] Ding K, Hill M T, Liu Z C, Yin L J, van Veldhoven P J and Ning C Z 2013 Opt. Express 21 4728
[38] Nielsen M P and Elezzabi A Y 2013 J. Opt. 15 075202
[39] Lu C Y, Chuang S L and Bimberg D 2013 IEEE J. Quantum Electron. 49 114
[40] Lu C Y, Chang S W, Chuang S L, Germann T D and Bimberg D 2010 Appl. Phys. Lett. 96 251101
[41] Lu C Y and Chuang S L 2011 Opt. Express. 19 13225
[42] Williams B S, Kumar S, Callebaut H, Hu Q and Reno J L 2003 Appl. Phys. Lett. 83 2124
[43] Walther C, Scalari G, Ines Amanti M, Beck M and Faist J 2010 Science 327 1495
[44] Huang K C Y, Seo M K, Sarmiento T, Huo Y, Harris J S and Brongersma M L 2014 Nat. Photon. 8 244
[45] Walters R J, van Loon R V A, Burnets I, Schmitz J and Polman A 2010 Nat. Mater. 9 21
[46] Neutens P, Lagae L, Borghs G and Van Dorpe P 2010 Nano Lett. 10 1429
[47] Li Y, Zhang H, Mei T, Zhu N, Zhang D H and Teng J 2014 Opt. Express 22 25599
[48] DoloresCalzadilla V, Romeira B, Pagliano F, Birindelli S, HigueraRodrigues A, van Veldhoven P J, Smit M K, Fiore A and Heiss D 2017 Nat. Commun. 8 14323
[49] Chou B T, Lu T C and Lin S D 2015 J. Lightwave Technol. 33 2087
[50] Li N, Liu K, Sorger V J and Sadana D K 2015 Sci. Rep. 5 14067
[51] Zhang B, Okimoto T, Tanemura T and Nakano Y 2014 Jpn. J. Appl. Phys. 53 112703
[52] Hill M T 2013 J. Lightwave Technol. 31 2540
[53] Lau E K, Lakhani A, Tucker R S and Wu M C 2009 Opt. Express 17 7790
[54] Ni C Y A and Chuang S L 2012 Opt. Express 20 16450
[55] Khurgin J B and Sun G 2014 Nat. Photon. 8 468
[56] Khurgin J B and Sun G 2012 Appl. Phys. Lett. 100 011105
[57] Khurgin J B 2015 Opt. Express 23 4186
[58] Wang S, Wang X Y, Li B, Chen H Z, Wang Y L, Dai L, Oulton R F and Ma R M 2017 Nat. Commun. 8 1889
[59] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
[60] Noginov M A, Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A and Podolskiy V A 2011 Appl. Phys. Lett. 99 021101
[61] Pickering T, Hamm J M, Page A F, Wuestner S and Hess O 2014 Nat. Commun. 5 4972
[62] Chou Y H, Wu Y M, Hong K B, Chou B T, Shih J H, Chung Y C, Chen P Y, Lin T R, Lin C C, Lin S D and Lu T C 2016 Nano Lett. 16 3179
[63] Chou Y H, Wu Y M, Hong K B, Chang C T, Chang T C, Huang Z T, Cheng P J, Yang J H, Lin M H, Lin T R, Chen K P, Gwo S and Lu T C 2018 Nano Lett. 18 747
[64] Ahn D and Chuang S L 2013 Appl. Phys. Lett. 102 121114
[65] van Beijnum F, van Veldhoven P J, Geluk E J, de Dood M J A, 't Hooft G W and van Exter M P 2013 Phys. Rev. Lett. 110 206802
[66] Seo M K, Jeong K Y, Yang J K, Lee Y H, Park H G and Kim S B 2007 Appl. Phys. Lett. 90 171122
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[4] Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere
Xiao-Zhuo Qi(祁晓卓), and Xi-Feng Ren(任希锋). Chin. Phys. B, 2022, 31(10): 104203.
[5] Standing-wave spectrometry in silicon nano-waveguides using reflection-based near-field scanning optical microscopy
Yi-Zhi Sun(孙一之), Wei Ding(丁伟), Bin-Bin Wang(王斌斌), Rafael Salas-Montiel, Sylvain Blaize, Renaud Bachelot, Zhong-Wei Fan(樊仲维), Li-Shuang Feng(冯丽爽). Chin. Phys. B, 2019, 28(1): 010702.
[6] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[7] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[8] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[9] Tunable optical filter using second-order micro-ring resonator
Lin Deng(邓林), Dezhao Li(李德钊), Zilong Liu(刘子龙), Yinghao Meng(孟英昊), Xiaonan Guo(郭小男), Yonghui Tian(田永辉). Chin. Phys. B, 2017, 26(2): 024209.
[10] All polymer asymmetric Mach-Zehnder interferometer waveguide sensor by imprinting bonding and laser polishing
Yu Liu(刘豫), Yue Sun(孙月), Yun-Ji Yi(衣云骥), Liang Tian(田亮), Yue Cao(曹悦), Chang-Ming Chen(陈长鸣), Xiao-Qiang Sun(孙小强), Da-Ming Zhang(张大明). Chin. Phys. B, 2017, 26(12): 124215.
[11] Different influences of u-InGaN upper waveguide on the performance of GaN-based blue and green laser diodes
Feng Liang(梁锋), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ping Chen(陈平), Jing Yang(杨静), Wei Liu(刘炜), Xiang Li(李翔), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群), Mo Li(李沫), Jian Zhang(张健). Chin. Phys. B, 2017, 26(11): 114203.
[12] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
[13] A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air
Gong Ping (龚萍), Xie Liang (谢亮), Qi Xiao-Qiong (漆晓琼), Wang Rui (王瑞), Wang Hui (王辉), Chang Ming-Chao (常明超), Yang Hui-Xia (杨慧霞), Sun Fei (孙菲), Li Guan-Peng (李冠鹏). Chin. Phys. B, 2015, 24(1): 014206.
[14] High conversion efficiency, high power density Q-switched fiber laser
Chen Xiao (陈霄), Xiao Qi-Rong (肖起榕), Jin Guang-Yong (金光勇), Yan Ping (闫平), Gong Ma-Li (巩马理). Chin. Phys. B, 2014, 23(6): 064218.
[15] A power and wavelength detuning-dependent hysteresis loop in a single mode Fabry-Pérot laser diode
Wu Jian-Wei (吴建伟), Bikash Nakarmi. Chin. Phys. B, 2013, 22(8): 084204.
No Suggested Reading articles found!