Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104204    DOI: 10.1088/1674-1056/ac8728
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator

Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊)
Key Laboratory of Electronic Testing Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
Abstract  The calcium fluoride (CaF2) whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality (Q) factor. In this paper, we achieved the observation of Raman lasing, first-order Raman comb, and second-order Raman lasing in a CaF2 disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43× 108 at 1550-nm wavelength. We also observed thermal effects in CaF2 disk resonator, and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing, since the intracavity power increases rapidly when the power reaches the threshold, and higher input pump power results in longer thermal drift and higher Raman emission power. With a further increase in pump power, the optical frequency combs range is from 1520 nm to 1650 nm, with a wavelength interval of 4× m FSR. It is a promising candidate for optical communication, biological environment monitoring, spectral analysis, and microwave signal sources.
Keywords:  whispering gallery mode      crystalline resonator      Raman lasing      nonlinear effects      thermo-optical oscillation      optical frequency combs  
Received:  10 May 2022      Revised:  18 July 2022      Accepted manuscript online: 
PACS:  42.55.Ye (Raman lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51727808, 51922009, 52005457, and 62004179) and the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province, China (Grant No. 201905D121001).
Corresponding Authors:  Enbo Xing, Jun Tang     E-mail:  xiaoxing1228@126.com;tangjun@nuc.edu.cn

Cite this article: 

Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊) Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator 2022 Chin. Phys. B 31 104204

[1] Kippenberg T J, Spillane S M and Vahala K J 2004 Phys. Rev. Lett. 93 083904
[2] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[3] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145
[4] Ilchenko V S, Savchenkov A A, Matsko A B and Maleki L 2004 Phys. Rev. Lett. 92 043903
[5] Xu T, Chen Y and Lin J 2017 Chin. Phys. B. 26 120201
[6] Fiedler K, Schiller S, Paschotta R, Kürz P and Mlynek J 1993 Opt. Lett. 18 1786
[7] Yang Q F, Yi X, Yang K Y and Vahala K 2017 Nat. Phys. 13 53
[8] Grudinin I S, Matsko A B and Maleki L 2007 Opt. Express 15 3390
[9] Cai X L, Zhou C H, Zhou D J, Liu J B, Guo J W and Gui L 2015 Chin. Phys. Lett. 32 114207
[10] Lin G, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2015 Phys. Rev. lett. 45 410
[11] Wang J, Sheng A G, Huang X, Li R Y and He G Q 2020 Chin. Phys. B. 29 034207
[12] Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D and Maleki L 2015 Nat. Commun. 6 7957
[13] Papp S B, Beha K, Del'Haye P, Quinlan F, Lee H, Vahala K J and Diddams S A 2014 Optica 1 10
[14] Lin G and Chembo Y K 2016 Opt. Lett. 41 3718
[15] Griffith A G, Yu M, Okawachi Y, Cardenas J, Mohanty A, Gaeta A L and Lipson M 2016 Opt. Express 24 13044
[16] Karpov M, Guo H, Kordts A, Brasch V, Pfeiffer M H P, Zervas M, Geiselmann M and Kippenberg T J 2016 Phys. Rev. Lett. 116 103902
[17] Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2290
[18] Lin G P, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2014 Appl. Phys. Lett. 105 231103
[19] Lecaplain C, Javerzac-Galy C, Gorodetsky M L and Kippenberg T J 2016 Nat. Commun. 7 13383
[20] Grudinin I S, Ilchenko V S and Maleki L 2006 Phys. Rev. A 74 063806
[21] Grudinin I S and Maleki L 2007 Opt. Lett. 32 166
[22] Grudinin I S and Maleki L 2008 J. Opt. Soc. Am. B 25 594
[23] Savchenkov A A, Matsko A B, Ilchenko V S and Maleki L 2007 Opt. Express 15 6768
[24] Okawachi Y, Yu M, Venkataraman V, Latawiec P M, Griffith A G, Lipson M, Lončar M and Gaeta A L 2017 Opt. Lett. 42 2786
[25] Matsko A B, Savchenkov A A, Liang W, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2845
[26] Gorodetsky M L and Ilchenko V S 1999 J. Opt. Soc. Am. B 16 147
[27] Wang M Y, Yang Y, Meng L, Jin X and Wang K 2019 Chin. Opt. Lett. 17 111401
[28] Savchenkov A A, Liang W, Ilchenko V, Matsko A and Maleki L 2018 IEEE J. Sel. Top. Quantum Electron. 24 2900111
[29] Sheng Q, Li R, Lee A J, Spence D J and Pask H M 2019 Opt. Express 27 8540
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] High-efficiency photon-electron coupling resonant emission in GaN-based microdisks on Si
Menghan Liu(刘梦涵), Peng Chen(陈鹏), Zili Xie(谢自力), Xiangqian Xiu(修向前), Dunjun Chen(陈敦军), Bin Liu(刘斌), Ping Han(韩平), Yi Shi(施毅), Rong Zhang(张荣), Youdou Zheng(郑有炓), Kai Cheng(程凯), Liyang Zhang(张丽阳). Chin. Phys. B, 2020, 29(8): 084203.
[3] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[4] Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm
Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华). Chin. Phys. B, 2018, 27(11): 117701.
[5] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[6] Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser
Li Chao-Ran (李超然), Dai Shi-Xun (戴世勋), Zhang Qin-Yuan (张勤远), Shen Xiang (沈祥), Wang Xun-Si (王训四), Zhang Pei-Qing (张培晴), Lu Lai-Wei (路来伟), Wu Yue-Hao (吴越豪), Lv She-Qin (吕社钦). Chin. Phys. B, 2015, 24(4): 044208.
[7] Self-organized voids revisited:Experimental verification of the formation mechanism
Song Juan (宋娟), Ye Jun-Yi (叶俊毅), Qian Meng-Di (钱梦迪), Luo Fang-Fang (骆芳芳), Lin Xian (林贤), Bian Hua-Dong (卞华栋), Dai Ye (戴晔), Ma Guo-Hong (马国宏), Chen Qing-Xi (陈庆希), Jiang Yan (姜燕), Zhao Quan-Zhong (赵全忠), Qiu Jian-Rong (邱建荣). Chin. Phys. B, 2014, 23(7): 077901.
[8] Design and analysis of a kind of large flattened mode optical fibre
Zhao Chu-Jun(赵楚军), Peng Run-Wu(彭润伍), Tang Zhi-Xiang(唐志祥), Ye Yun-Xia(叶云霞), and Fan Dian-Yuan(范滇元). Chin. Phys. B, 2006, 15(8): 1838-1842.
No Suggested Reading articles found!