ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator |
Tong Xing(邢彤), Enbo Xing(邢恩博)†, Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军)‡, and Jun Liu(刘俊) |
Key Laboratory of Electronic Testing Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China |
|
|
Abstract The calcium fluoride (CaF2) whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality (Q) factor. In this paper, we achieved the observation of Raman lasing, first-order Raman comb, and second-order Raman lasing in a CaF2 disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43× 108 at 1550-nm wavelength. We also observed thermal effects in CaF2 disk resonator, and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing, since the intracavity power increases rapidly when the power reaches the threshold, and higher input pump power results in longer thermal drift and higher Raman emission power. With a further increase in pump power, the optical frequency combs range is from 1520 nm to 1650 nm, with a wavelength interval of 4× m FSR. It is a promising candidate for optical communication, biological environment monitoring, spectral analysis, and microwave signal sources.
|
Received: 10 May 2022
Revised: 18 July 2022
Accepted manuscript online:
|
PACS:
|
42.55.Ye
|
(Raman lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51727808, 51922009, 52005457, and 62004179) and the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province, China (Grant No. 201905D121001). |
Corresponding Authors:
Enbo Xing, Jun Tang
E-mail: xiaoxing1228@126.com;tangjun@nuc.edu.cn
|
Cite this article:
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊) Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator 2022 Chin. Phys. B 31 104204
|
[1] Kippenberg T J, Spillane S M and Vahala K J 2004 Phys. Rev. Lett. 93 083904 [2] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214 [3] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145 [4] Ilchenko V S, Savchenkov A A, Matsko A B and Maleki L 2004 Phys. Rev. Lett. 92 043903 [5] Xu T, Chen Y and Lin J 2017 Chin. Phys. B. 26 120201 [6] Fiedler K, Schiller S, Paschotta R, Kürz P and Mlynek J 1993 Opt. Lett. 18 1786 [7] Yang Q F, Yi X, Yang K Y and Vahala K 2017 Nat. Phys. 13 53 [8] Grudinin I S, Matsko A B and Maleki L 2007 Opt. Express 15 3390 [9] Cai X L, Zhou C H, Zhou D J, Liu J B, Guo J W and Gui L 2015 Chin. Phys. Lett. 32 114207 [10] Lin G, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2015 Phys. Rev. lett. 45 410 [11] Wang J, Sheng A G, Huang X, Li R Y and He G Q 2020 Chin. Phys. B. 29 034207 [12] Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D and Maleki L 2015 Nat. Commun. 6 7957 [13] Papp S B, Beha K, Del'Haye P, Quinlan F, Lee H, Vahala K J and Diddams S A 2014 Optica 1 10 [14] Lin G and Chembo Y K 2016 Opt. Lett. 41 3718 [15] Griffith A G, Yu M, Okawachi Y, Cardenas J, Mohanty A, Gaeta A L and Lipson M 2016 Opt. Express 24 13044 [16] Karpov M, Guo H, Kordts A, Brasch V, Pfeiffer M H P, Zervas M, Geiselmann M and Kippenberg T J 2016 Phys. Rev. Lett. 116 103902 [17] Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2290 [18] Lin G P, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2014 Appl. Phys. Lett. 105 231103 [19] Lecaplain C, Javerzac-Galy C, Gorodetsky M L and Kippenberg T J 2016 Nat. Commun. 7 13383 [20] Grudinin I S, Ilchenko V S and Maleki L 2006 Phys. Rev. A 74 063806 [21] Grudinin I S and Maleki L 2007 Opt. Lett. 32 166 [22] Grudinin I S and Maleki L 2008 J. Opt. Soc. Am. B 25 594 [23] Savchenkov A A, Matsko A B, Ilchenko V S and Maleki L 2007 Opt. Express 15 6768 [24] Okawachi Y, Yu M, Venkataraman V, Latawiec P M, Griffith A G, Lipson M, Lončar M and Gaeta A L 2017 Opt. Lett. 42 2786 [25] Matsko A B, Savchenkov A A, Liang W, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2845 [26] Gorodetsky M L and Ilchenko V S 1999 J. Opt. Soc. Am. B 16 147 [27] Wang M Y, Yang Y, Meng L, Jin X and Wang K 2019 Chin. Opt. Lett. 17 111401 [28] Savchenkov A A, Liang W, Ilchenko V, Matsko A and Maleki L 2018 IEEE J. Sel. Top. Quantum Electron. 24 2900111 [29] Sheng Q, Li R, Lee A J, Spence D J and Pask H M 2019 Opt. Express 27 8540 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|