Abstract The calcium fluoride (CaF2) whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality (Q) factor. In this paper, we achieved the observation of Raman lasing, first-order Raman comb, and second-order Raman lasing in a CaF2 disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43× 108 at 1550-nm wavelength. We also observed thermal effects in CaF2 disk resonator, and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing, since the intracavity power increases rapidly when the power reaches the threshold, and higher input pump power results in longer thermal drift and higher Raman emission power. With a further increase in pump power, the optical frequency combs range is from 1520 nm to 1650 nm, with a wavelength interval of 4× m FSR. It is a promising candidate for optical communication, biological environment monitoring, spectral analysis, and microwave signal sources.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51727808, 51922009, 52005457, and 62004179) and the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province, China (Grant No. 201905D121001).
Corresponding Authors:
Enbo Xing, Jun Tang
E-mail: xiaoxing1228@126.com;tangjun@nuc.edu.cn
Cite this article:
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊) Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator 2022 Chin. Phys. B 31 104204
[1] Kippenberg T J, Spillane S M and Vahala K J 2004 Phys. Rev. Lett.93 083904 [2] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature450 1214 [3] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon.8 145 [4] Ilchenko V S, Savchenkov A A, Matsko A B and Maleki L 2004 Phys. Rev. Lett.92 043903 [5] Xu T, Chen Y and Lin J 2017 Chin. Phys. B.26 120201 [6] Fiedler K, Schiller S, Paschotta R, Kürz P and Mlynek J 1993 Opt. Lett.18 1786 [7] Yang Q F, Yi X, Yang K Y and Vahala K 2017 Nat. Phys.13 53 [8] Grudinin I S, Matsko A B and Maleki L 2007 Opt. Express15 3390 [9] Cai X L, Zhou C H, Zhou D J, Liu J B, Guo J W and Gui L 2015 Chin. Phys. Lett.32 114207 [10] Lin G, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2015 Phys. Rev. lett.45 410 [11] Wang J, Sheng A G, Huang X, Li R Y and He G Q 2020 Chin. Phys. B.29 034207 [12] Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D and Maleki L 2015 Nat. Commun.6 7957 [13] Papp S B, Beha K, Del'Haye P, Quinlan F, Lee H, Vahala K J and Diddams S A 2014 Optica1 10 [14] Lin G and Chembo Y K 2016 Opt. Lett.41 3718 [15] Griffith A G, Yu M, Okawachi Y, Cardenas J, Mohanty A, Gaeta A L and Lipson M 2016 Opt. Express24 13044 [16] Karpov M, Guo H, Kordts A, Brasch V, Pfeiffer M H P, Zervas M, Geiselmann M and Kippenberg T J 2016 Phys. Rev. Lett.116 103902 [17] Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett.36 2290 [18] Lin G P, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2014 Appl. Phys. Lett.105 231103 [19] Lecaplain C, Javerzac-Galy C, Gorodetsky M L and Kippenberg T J 2016 Nat. Commun.7 13383 [20] Grudinin I S, Ilchenko V S and Maleki L 2006 Phys. Rev. A74 063806 [21] Grudinin I S and Maleki L 2007 Opt. Lett.32 166 [22] Grudinin I S and Maleki L 2008 J. Opt. Soc. Am. B25 594 [23] Savchenkov A A, Matsko A B, Ilchenko V S and Maleki L 2007 Opt. Express15 6768 [24] Okawachi Y, Yu M, Venkataraman V, Latawiec P M, Griffith A G, Lipson M, Lončar M and Gaeta A L 2017 Opt. Lett.42 2786 [25] Matsko A B, Savchenkov A A, Liang W, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett.36 2845 [26] Gorodetsky M L and Ilchenko V S 1999 J. Opt. Soc. Am. B16 147 [27] Wang M Y, Yang Y, Meng L, Jin X and Wang K 2019 Chin. Opt. Lett.17 111401 [28] Savchenkov A A, Liang W, Ilchenko V, Matsko A and Maleki L 2018 IEEE J. Sel. Top. Quantum Electron.24 2900111 [29] Sheng Q, Li R, Lee A J, Spence D J and Pask H M 2019 Opt. Express27 8540
Self-organized voids revisited:Experimental verification of the formation mechanism Song Juan (宋娟), Ye Jun-Yi (叶俊毅), Qian Meng-Di (钱梦迪), Luo Fang-Fang (骆芳芳), Lin Xian (林贤), Bian Hua-Dong (卞华栋), Dai Ye (戴晔), Ma Guo-Hong (马国宏), Chen Qing-Xi (陈庆希), Jiang Yan (姜燕), Zhao Quan-Zhong (赵全忠), Qiu Jian-Rong (邱建荣). Chin. Phys. B, 2014, 23(7): 077901.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.