|
|
Standing-wave spectrometry in silicon nano-waveguides using reflection-based near-field scanning optical microscopy |
Yi-Zhi Sun(孙一之)1,2, Wei Ding(丁伟)2, Bin-Bin Wang(王斌斌)3, Rafael Salas-Montiel3, Sylvain Blaize3, Renaud Bachelot3, Zhong-Wei Fan(樊仲维)4, Li-Shuang Feng(冯丽爽)1 |
1 School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
2 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Laboratoire de Nanotechnologie et d'Instrumentation Optique(LNIO), ICD CNRS UMR 6281, Université de Technologie de Troyes, France;
4 Academy of Opto-Electronics, Chinese Academy of Science, Beijing 100094, China |
|
|
Abstract Utilizing reflection-based near-field scanning optical microscopy (NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.
|
Received: 06 November 2018
Revised: 15 November 2018
Accepted manuscript online:
|
PACS:
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
42.82.-m
|
(Integrated optics)
|
|
95.75.Kk
|
(Interferometry)
|
|
Fund: Project supported by National Key R&D Program of China (Grant No. 2017YFA0303800), National Natural Science Foundation of China (Grant No. 61575218), and Defense Industrial Technology Development Program, China (Grant No. JCKY201601C006). |
Corresponding Authors:
Wei Ding, Li-Shuang Feng
E-mail: fenglishuang@buaa.edu.cn;wding@iphy.ac.cn
|
Cite this article:
Yi-Zhi Sun(孙一之), Wei Ding(丁伟), Bin-Bin Wang(王斌斌), Rafael Salas-Montiel, Sylvain Blaize, Renaud Bachelot, Zhong-Wei Fan(樊仲维), Li-Shuang Feng(冯丽爽) Standing-wave spectrometry in silicon nano-waveguides using reflection-based near-field scanning optical microscopy 2019 Chin. Phys. B 28 010702
|
[1] |
Agrell E, Karlsson M, Chraplyvy A, Richardson D J, Krummrich P M, Winzer P, Roberts K, Fischer J K, Savory S J, Eggleton B J, Secondini M, Kschischang F R, Lord A, Prat J, Tomkos I, Bowers J E, Srinivasan S, Brandt-Pearce M and Gisin N 2016 J. Opt. 18 063002
|
[2] |
Kopp C, Bernabé S, Bakir B B, Fedeli J, Orobtchouk R, Schrank F, Porte H, Zimmermann L and Tekin T 2011 IEEE J. Sel. Top. Quantum Electron. 17 498
|
[3] |
Streshinsky M, Ding R, Liu Y, Novack A, Galland, C, Lim A J, Lo P G, Baehr-Jones T and Hochberg M 2013 Opt. Photonics News 24 32
|
[4] |
Eickhoff W and Ulrich R 1981 Appl. Phys. Lett. 39 693
|
[5] |
Soller B J, Gifford D K, Wolfe M S and Froggatt M E 2005 Opt. Express 13 666
|
[6] |
Zhao D, Pustakhod D, Williams K and Leijtens X 2017 IEEE Photon. Technol. Lett. 29 1379
|
[7] |
Heck M J R, Bauters J F, Davenport M L, Doylend J K, Jain S, Kurczveil G, Srinivasan S, Tang Y and Bowers J E 2013 IEEE J. Sel. Top. Quantum Electron. 19 6100117
|
[8] |
Glombitza U and Brinkmeyer E 1993 J. Lightw. Technol. 11 1377
|
[9] |
Scheerlinck S, Taillaert D, van Thourhout D and Baets R 2008 Appl. Phys. Lett. 92 031104
|
[10] |
Rotenberg N and Kuipers L 2014 Nat. Photon. 8 919
|
[11] |
Pohl D W, Denk W and Lanz M 1984 Appl. Phys. Lett. 44 651
|
[12] |
Bachelot R, Gleyzes P and Boccara A C 1995 Opt. Lett. 20 1924
|
[13] |
Inouye Y and Kawata S 1994 Opt. Lett. 19 159
|
[14] |
Hopman W C L, van der Werf K O, Hollink A J, Bogaerts W, Subramaniam V and de Ridder R M 2006 Opt. Express 14 8745
|
[15] |
Robinson J T, Preble S F and Lipson M 2006 Opt. Express 14 10588
|
[16] |
Sun Y Z, Wang B B, Salas-Montiel R, Blaize S, Bachelot R, Feng L S and Ding W 2018 Opt. Lett. 43 4863
|
[17] |
Bohren C and Huffman D 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons)
|
[18] |
Stefanon I, Blaize S, Bruyant A, Aubert S, Lerondel G, Bachelot R and Royer P 2005 Opt. Express 13 5553
|
[19] |
Ocelic N, Huber A, and Hillenbr R 2006 Appl. Phys. Lett. 89 101124
|
[20] |
Bruyant A, Lerondel G, Blaize S, Stefanon I, Aubert S, Bachelot R and Royer P 2006 Phys. Rev. B 74 075414
|
[21] |
Lerondel G, Sinno A, Chassagne L, Blaize S, Ruaux P, Bruyant A, Topcu S, Royer P and Alayli Y 2009 J. Appl. Phys. 106 044913
|
[22] |
Luo Y, Chamanzar M, Apuzzo A, Salas-Montiel R, Nguyen K N, Blaize S and Adibi A 2015 Nano Lett. 15 849
|
[23] |
Sun Y Z, Feng L S, Bachelot R, Blaize S and Ding W 2017 Opt. Express 25 17417
|
[24] |
Robinson J T and Lipson M 2011 Opt. Express 19 18380
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|