Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104202    DOI: 10.1088/1674-1056/ac7293
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals

Ines Ben Amor1, Lotfi Saadaoui1,†, Abdulaziz N. Alharbi2, Talal M. Althagafi2, and Taoufik Soltani1
1. Université Tunis El Manar, Laboratoire de Physique de la Matière Molle et de la Modélisation Electromagnétique, 2092 Tunis;
2. Physics Department, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
Abstract  Hydrogen-bonded polar nematic liquid crystal series with the general formula nOBAF (n = 7—12) is studied. The mesomorphic characterization is demonstrated through differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The complexes with short alkyl chains (n=7, 8) present a wide nematic range and monotropic smectic F mesophase, whereas the longer alkyl chain (n=10—12) analogues show high melting and low clearing mesomorphic liquid crystals. The thermal range of the mesophase and the birefringence increase with chain length decreasing. Furthermore, the effect of the nanoparticles (LiNbO3) on the thermal and the electrical behavior of 8OBAF are investigated. The presence of LiNbO3 nanoparticles increases the conductivity and reduces the resistivity of the complex.
Keywords:  fluorine liquid crystal      polar nematic      ferroelectric nanoparticles      thermal stability      dielectric behavior  
Received:  13 March 2022      Revised:  28 April 2022      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
  61.30.Eb (Experimental determinations of smectic, nematic, cholesteric, and other structures)  
  61.30.-v (Liquid crystals)  
Corresponding Authors:  Lotfi Saadaoui     E-mail:  lotfi.saadaoui@fst.utm.tn

Cite this article: 

Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals 2022 Chin. Phys. B 31 104202

[1] Alaasar M, Poppe S and Tschierske C 2019 J. Mol. Liq. 277 233
[2] Cho C M, Wang X, Li J J, He C and Xu J 2013 Liq. Cryst. 40 185
[3] Martinez-Felipe A, Cook A G, Abberley J P, Walker R, Storey J M and Imrie C T 2016 RSC Adv. 6 108164
[4] Alaasar M, Schmidt J C, Darweesh A F and Tschierske C 2020 J. Mol. Liq. 310 113252
[5] Alaasar M, Tschierske C and Prehm M 2011 Liq. Cryst. 38 925
[6] Al Sheikh Ali A, Khan D, Naqvi A, Al-Blewi F F, Rezki N, Aouad M R and Hagar M 2020 ACS Omega 6 301
[7] Almehmadi M A, Aljuhani A, Alraqa S Y, Ali I, Rezki N, Aouad M R and Hagar M 2021 J. Mol. Struct. 1225 129148
[8] Armstrong G and Buggy M 2005 J. Mater. Sci. 40 547
[9] Blanke M, Balszuweit J, Saccone M, Wölper C, Jiménez D D, Mezger M, Voskuhl J and Giese M 2020 Chem. Commun. 56 1105
[10] Bryndal I, Drozd M, Lis T, Zarȩba J K and Ratajczak H 2020 CrystEngComm 22 4552
[11] Chen S, Jiang S, Qiu J, Guo H and Yang F 2020 Chem. Commun. 56 7745
[12] Gimeno N, Ros M B, Serrano J L and De La Fuente M R 2004 Angew. Chem. 116 5347
[13] Mohan M M 2021 IOP Conf. Ser. 012089
[14] Fouzai M, Guesmi A, Hamadi N B and Soltani T 2020 Liq. Cryst. 47 777
[15] Hagar M, Ahmed H, El-Sayed T and Alnoman R 2019 J. Mol. Liq. 285 96
[16] Devadiga D and Ahipa T 2020 Liq. Cryst. Rev. 8 5
[17] Nguyen H L, Horton P N, Hursthouse M B, Legon A C and Bruce D W 2004 J. Am. Chem. Soc. 126 16
[18] Missaoui T, Amor I B, Soltani T, Ouada H B, Jeanneau E and Chevalier Y 2020 J. Mol. Liq. 304 112726
[19] Paleos C M and Tsiourvas D 2001 Liq. Cryst. 28 1127
[20] Parveen S, Hagar M B, Alnoman R, Ahmed H A, El Ashry E S H and Zakaria M A 2021 Polycyclic Aromatic Compounds 1
[21] Arakawa Y, Sasaki Y and Tsuji H 2019 J. Mol. Liq. 280 153
[22] Walker R, Pociecha D, Crawford C A, Storey J M, Gorecka E and Imrie C T 2020 J. Mol. Liq. 303 112630
[23] Walker R, Pociecha D, Abberley J, Martinez-Felipe A, Paterson D, Forsyth E, Lawrence G, Henderson P, Storey J and Gorecka E 2018 Chem. Commun. 54 3383
[24] Moirangthem M and Schenning A P 2018 Polycyclic Aromat. Compd. 10 4168
[25] Li Y, Zhuo H, Chen H and Chen S 2019 Polymer 179 121671
[26] Ni B, Xie H L, Tang J, Zhang H L and Chen E Q 2016 Chem. Commun. 52 10257
[27] Ban J, Mu L, Yang J, Chen S and Zhuo H 2017 J. Mater. Chem. A 5 14514
[28] Hagar M, Ahmed H A, Alnoman R B, Jaremko M, Emwas A H, Sioud S and Al-Ola K A 2021 Front. Chem. 9
[29] Yan X, Zhou Y, Liu W, Liu S, Hu X, Zhao W, Zhou G and Yuan D 2020 Liq. Cryst. 47 1131
[30] Pushpavathi N, Sandhya K and Pratibha R 2019 Liq. Cryst. 46 666
[31] Ayeb H, Alaya S, Derbali M, Samet L, Bennaceur J, Jomni F and Soltani T 2021 Liq. Cryst. 48 223
[32] Chemingui M, Singh U B, Yadav N, Dabrowski R S and Dhar R 2020 J. Mol. Liq. 319 114299
[33] Ayeb H, Derbali M, Mouhli A, Soltani T, Jomni F, Fresnais J and Lacaze E 2020 Phys. Rev. E 102 052703
[34] Nasri R, Missaoui T, Hbibi A and Soltani T 2021 Liq. Cryst. 1
[35] Derbali M, Guesmi A, Hamadi N B and Soltani T 2020 J. Mol. Liq. 319 113768
[36] Lalik S, Deptuch A, Jaworska-Gołą B T, Fryń P, Dardas D, Stefanczyk O, Urbanńska M and Marzec M 2020 J. Phys. Chem. B 124 6055
[37] Fouzai M, Hamdi R, Ghrab S, Soltani T, Ionescu A and Othman T 2018 J. Mol. Liq. 249 1279
[38] Selvaraj P, Subramani K, Hsu C J and Huang C Y 2020 Polymers 12 2977
[39] Basumatary J, Nath A and Devi T K 2020 J. Mol. Liq. 311 113251
[40] Mishra R, Hazarika J, Hazarika A, Gogoi B, Dubey R, Bhattacharjee D, Singh K N and Alapati P R 2018 Liq. Cryst. 45 1661
[41] Wang X, Sternberg M, Kohler F T, Melcher B U, Wasserscheid P and Meyer K 2014 RSC Adv. 4 12476
[42] Luo C C, Jia Y G, Song K M, Meng F B and Hu J S 2017 Liq. Cryst. 44 2366
[43] Yamamura Y, Tsuchiya R, Fujimura S, Hishida M and Saito K 2017 J. Phys. Chem. B 121 1438
[44] Sprokel G 1974 Mol. Cryst. Liq. Cryst. 26 45
[45] Zafra J C T, Garcilópez I A P, Del Pozo V U, Pena J M S and Lucas C M 2011 Opt. Eng. 50 081206
[46] Seo J H, Huh J W, Sohn H J, Lim E and Yoon T H 2020 Cryst. 10 55
[47] Urbanski M and Lagerwall J P 2017 J. Mater. Chem. C 5 8802
[1] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[2] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[3] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[4] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[5] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[6] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
[7] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[8] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
[9] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[10] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[11] Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution
Chu-Yu Zhong(钟础宇), Xing Zhang(张星), Di Liu(刘迪), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(6): 064204.
[12] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[13] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[14] Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films
Wen-Feng Liu(刘文峰), Min-Gang Zhang(张敏刚), Ke-Wei Zhang(张克维), Hai-Jie Zhang(张海杰), Xiao-Hong Xu(许小红), Yue-Sheng Chai(柴跃生). Chin. Phys. B, 2016, 25(11): 117506.
[15] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
No Suggested Reading articles found!