ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Studies on convergence and scaling law of Thomson backscattering spectra in strong fields |
Han-Zhang Xie(谢含章)1, Chun Jiang(蒋纯)2, Bai-Song Xie(谢柏松)2,3 |
1. College of Applied Science, Beijing University of Technology, Beijing 100124, China; 2. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China; 3. Beijing Radiation Center, Beijing 100875, China |
|
|
Abstract With the saddle point analysis method for the Bessel function structure and property, the convergence problem and the scaling laws of Thomson backscattering spectra are solved and studied in both cases that are for the plane wave laser field without and with applied external constant magnetic field. Some unclear points appeared in previous work are clarified. The extension of the method to a general situation for the laser field with an arbitrary polarization is discussed. We also make a simple analysis and discussion about the optimal spectra dependence of field parameters and its implication to practical applications.
|
Received: 01 June 2017
Revised: 10 August 2017
Accepted manuscript online:
|
PACS:
|
41.60.-m
|
(Radiation by moving charges)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475026 and 11175023). |
Corresponding Authors:
Bai-Song Xie
E-mail: bsxie@bnu.edu.cn
|
Cite this article:
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松) Studies on convergence and scaling law of Thomson backscattering spectra in strong fields 2017 Chin. Phys. B 26 124101
|
[1] |
Tajima T and Mourou G A 2002 Phys. Rev. ST Accel. Beams 5 031301
|
[2] |
Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod. Phys. 78 309
|
[3] |
Piazza A Di, Muller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
|
[4] |
Katsouleas T 2004 Nature 431 515
|
[5] |
Vieira J and Mendonca J T 2014 Phys. Rev. Lett. 112 215001
|
[6] |
Bake M Ali, Xie B S, Aimidula A and Wang H Y 2013 Phys. Plasmas 20 074503
|
[7] |
Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L and Karsch S 2015 Phys. Rev. Lett. 114 195003
|
[8] |
Baczewski A D, Shulenburger L, Desjarlais M P, Hansen S B and Magyar R J 2016 Phys. Rev. Lett. 116 115004
|
[9] |
Jiang Z, Li M and Zhang X C 2000 Appl. Phys. Lett. 76 3221
|
[10] |
Pickwell E and Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301
|
[11] |
Lu W, Huang C, Zhou M, Mori W B and Katsouleas T 2006 Phys. Rev. Lett. 96 165002
|
[12] |
Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709
|
[13] |
Xie B S, Wu H C, Wang H, Wang N Y and Yu M Y 2007 Phys. Plasmas 14 073103
|
[14] |
Wu H C, Xie B S, Liu M P, Hong X R, Zhang S and Yu M Y 2009 Phys. Plasmas 16 073108
|
[15] |
Corde S, Phuoc K Ta, Lambert G, Fitour R, Malka V and Rousse A 2013 Rev. Mod. Phys. 85 1
|
[16] |
Huang Y S, Bi Y J, Shi Y J, Wang N Y, Tang X Z and Gao Z 2009 Phys. Rev. E 79 036406
|
[17] |
Zhang X M, Tajima T, Farinella D, Shin Y M, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F and Shen B F 2016 Phys. Rev. Accel. Beams 19 101004
|
[18] |
Gong Z, Hu R H, Shou Y R, Qiao B, Chen C E, He X T, Bulanov S S, Esirkepov T Zh, Bulanov S V and Yan X Q 2017 Phys. Rev. E 95 013210
|
[19] |
Glenzer S H and Redmer R 2009 Rev. Mod. Phys. 81 1625
|
[20] |
Chen S Y, Maksimchuk A and Umstadter D 1998 Nature 396 653
|
[21] |
Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U and Sauerbrey R 2006 Phys. Rev. Lett. 96 014802
|
[22] |
Krafft G A, Doyuran A and Rosenzweig J B 2005 Phys. Rev. E 72 056502
|
[23] |
Koga J, Esirkepov T Zh and Bulanov S V 2005 Phys. Plasmas 12 093106
|
[24] |
Xu T, Chen M, Li F Y, Yu L L, Sheng Z M and Zhang J 2014 Appl. Phys. Lett. 104 013903
|
[25] |
He F, Lau Y Y, Umstadter D P and Kowalczyk R 2003 Phys. Rev. Lett. 90 055002
|
[26] |
Lau Y Y, He F, Umstadter D P and Kowalczyk R 2003 Phys. Plasmas 10 2155
|
[27] |
He F, Lau Y Y, Umstadter D P and Strickler T 2002 Phys. Plasmas 9 4325
|
[28] |
Salamin Y I and Faisal F H M 1998 PPhys. Rev. A 58 3221
|
[29] |
Salamin Y I 1999 Phys. Rev. A 60 3276
|
[30] |
Faisal F H M and Salamin Y I 1999 Phys. Rev. A 60 2505
|
[31] |
Salamin Y I, Faisal F H M and Keitel C H 2000 Phys. Rev. A 62 053809
|
[32] |
Salamin Y I and Faisal F H M 2000 Phys. Rev. A 61 043801
|
[33] |
Fu Y J, Jiang C, Lv C, Wan F, Sang H B and Xie B S 2016 Phys. Rev. A 94 052102
|
[34] |
Jiang C, Xie H Z, Sang H B and Xie B S 2017 Europhys. Lett. 117 44002
|
[35] |
Zhao T, Zhong R B, Hu M, Chen X X, Zhang P, Gong S and Liu S G 2015 Chin. Phys. B 24 094102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|