Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124101    DOI: 10.1088/1674-1056/26/12/124101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Studies on convergence and scaling law of Thomson backscattering spectra in strong fields

Han-Zhang Xie(谢含章)1, Chun Jiang(蒋纯)2, Bai-Song Xie(谢柏松)2,3
1. College of Applied Science, Beijing University of Technology, Beijing 100124, China;
2. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
3. Beijing Radiation Center, Beijing 100875, China
Abstract  With the saddle point analysis method for the Bessel function structure and property, the convergence problem and the scaling laws of Thomson backscattering spectra are solved and studied in both cases that are for the plane wave laser field without and with applied external constant magnetic field. Some unclear points appeared in previous work are clarified. The extension of the method to a general situation for the laser field with an arbitrary polarization is discussed. We also make a simple analysis and discussion about the optimal spectra dependence of field parameters and its implication to practical applications.
Keywords:  radiation by moving charges      Thomson scattering spectra      frequency conversion and harmonic generation      scaling law  
Received:  01 June 2017      Revised:  10 August 2017      Accepted manuscript online: 
PACS:  41.60.-m (Radiation by moving charges)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475026 and 11175023).
Corresponding Authors:  Bai-Song Xie     E-mail:  bsxie@bnu.edu.cn

Cite this article: 

Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松) Studies on convergence and scaling law of Thomson backscattering spectra in strong fields 2017 Chin. Phys. B 26 124101

[1] Tajima T and Mourou G A 2002 Phys. Rev. ST Accel. Beams 5 031301
[2] Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod. Phys. 78 309
[3] Piazza A Di, Muller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
[4] Katsouleas T 2004 Nature 431 515
[5] Vieira J and Mendonca J T 2014 Phys. Rev. Lett. 112 215001
[6] Bake M Ali, Xie B S, Aimidula A and Wang H Y 2013 Phys. Plasmas 20 074503
[7] Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L and Karsch S 2015 Phys. Rev. Lett. 114 195003
[8] Baczewski A D, Shulenburger L, Desjarlais M P, Hansen S B and Magyar R J 2016 Phys. Rev. Lett. 116 115004
[9] Jiang Z, Li M and Zhang X C 2000 Appl. Phys. Lett. 76 3221
[10] Pickwell E and Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301
[11] Lu W, Huang C, Zhou M, Mori W B and Katsouleas T 2006 Phys. Rev. Lett. 96 165002
[12] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709
[13] Xie B S, Wu H C, Wang H, Wang N Y and Yu M Y 2007 Phys. Plasmas 14 073103
[14] Wu H C, Xie B S, Liu M P, Hong X R, Zhang S and Yu M Y 2009 Phys. Plasmas 16 073108
[15] Corde S, Phuoc K Ta, Lambert G, Fitour R, Malka V and Rousse A 2013 Rev. Mod. Phys. 85 1
[16] Huang Y S, Bi Y J, Shi Y J, Wang N Y, Tang X Z and Gao Z 2009 Phys. Rev. E 79 036406
[17] Zhang X M, Tajima T, Farinella D, Shin Y M, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F and Shen B F 2016 Phys. Rev. Accel. Beams 19 101004
[18] Gong Z, Hu R H, Shou Y R, Qiao B, Chen C E, He X T, Bulanov S S, Esirkepov T Zh, Bulanov S V and Yan X Q 2017 Phys. Rev. E 95 013210
[19] Glenzer S H and Redmer R 2009 Rev. Mod. Phys. 81 1625
[20] Chen S Y, Maksimchuk A and Umstadter D 1998 Nature 396 653
[21] Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U and Sauerbrey R 2006 Phys. Rev. Lett. 96 014802
[22] Krafft G A, Doyuran A and Rosenzweig J B 2005 Phys. Rev. E 72 056502
[23] Koga J, Esirkepov T Zh and Bulanov S V 2005 Phys. Plasmas 12 093106
[24] Xu T, Chen M, Li F Y, Yu L L, Sheng Z M and Zhang J 2014 Appl. Phys. Lett. 104 013903
[25] He F, Lau Y Y, Umstadter D P and Kowalczyk R 2003 Phys. Rev. Lett. 90 055002
[26] Lau Y Y, He F, Umstadter D P and Kowalczyk R 2003 Phys. Plasmas 10 2155
[27] He F, Lau Y Y, Umstadter D P and Strickler T 2002 Phys. Plasmas 9 4325
[28] Salamin Y I and Faisal F H M 1998 PPhys. Rev. A 58 3221
[29] Salamin Y I 1999 Phys. Rev. A 60 3276
[30] Faisal F H M and Salamin Y I 1999 Phys. Rev. A 60 2505
[31] Salamin Y I, Faisal F H M and Keitel C H 2000 Phys. Rev. A 62 053809
[32] Salamin Y I and Faisal F H M 2000 Phys. Rev. A 61 043801
[33] Fu Y J, Jiang C, Lv C, Wan F, Sang H B and Xie B S 2016 Phys. Rev. A 94 052102
[34] Jiang C, Xie H Z, Sang H B and Xie B S 2017 Europhys. Lett. 117 44002
[35] Zhao T, Zhong R B, Hu M, Chen X X, Zhang P, Gong S and Liu S G 2015 Chin. Phys. B 24 094102
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[3] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[4] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
[5] Scaling law of single ion-atom impact ionization cross sections of noble gases from He to Xe at strong perturbative energies
Ren Ping-Yuan (任屏源), Zou Xian-Rong (邹贤容), Shao Jian-Xiong (邵剑雄), Wang Shi-Yao (王诗尧), Zhou Man (周满), Zhou Wang (周旺), Yang Ai-Xiang (杨爱香), Yan Peng-Xun (闫鹏勋), Chen Xi-Meng (陈熙萌). Chin. Phys. B, 2015, 24(6): 063402.
[6] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[7] Calculation of the photoelectron spectra under the scaling transform
Ye Hui-Liang (叶会亮), Wu Yan (吴艳), Zhang Jing-Tao (张敬涛), Shao Chu-Yin (邵初寅). Chin. Phys. B, 2013, 22(1): 013207.
[8] Fluctuations in airport arrival and departure traffic: A network analysis
Li Shan-Mei (李善梅), Xu Xiao-Hao (徐肖豪), Meng Ling-Hang (孟令航 ). Chin. Phys. B, 2012, 21(8): 088901.
[9] Kinetic evolutionary behavior of catalysis-select migration
Wu Yuan-Gang(吴远刚), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪) . Chin. Phys. B, 2012, 21(6): 068201.
[10] A scaling law of high-order harmonic generation
Wu Yan(吴艳), Ye Hui-Liang(叶会亮), Shao Chu-Yin(邵初寅), and Zhang Jing-Tao(张敬涛) . Chin. Phys. B, 2012, 21(2): 024210.
[11] Dynamic models of pest propagation and pest control
Yin Ming(尹铭), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪). Chin. Phys. B, 2011, 20(8): 088201.
[12] Aggregation processes with catalysis-driven monomer birth/death
Chen Yu(陈玉), Han An-Jia(韩安家), Ke Jian-Hong(柯见洪), and Lin Zhen-Quan(林振权). Chin. Phys. B, 2006, 15(8): 1896-1902.
[13] Aggregate growth driven by monomer transfer
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权). Chin. Phys. B, 2005, 14(8): 1676-1682.
[14] Relativistic calculation of dielectronic recombination for He-like krypton
Shi Xi-Heng (史习珩), Wang Yan-Sen (王炎森), Chen Chong-Yang (陈重阳), Gu Ming-Feng (顾明峰). Chin. Phys. B, 2005, 14(5): 959-963.
[15] Competition between aggregation and migration processes of a multi-species system
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权), Ye Peng (叶鹏). Chin. Phys. B, 2005, 14(12): 2602-2608.
No Suggested Reading articles found!