|
|
Quantum correlation and entropic uncertainty in a quantum-dot system |
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋)† |
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract We explore the dynamical behaviors of the measurement uncertainty and quantum correlation for a vertical quantum-dot system in the presence of magnetic field, including electron-electron interaction and Coulomb-blocked systems. Stemming from the quantum-memory-assisted entropic uncertainty relation, the uncertainty of interest is associated with temperature and parameters related to the magnetic field. Interestingly, the temperature has two kinds of influences on the variation of measurement uncertainty with respect to the magnetic-field-related parameters. We also discuss the relation between the lower bound of Berta et al. and the quantum discord. It is found that there is a natural competition between the quantum discord and the entropy minΠiBSΠiB(ρA|B). Finally, we bring in two improved bounds to offer a more precise limit to the entropic uncertainty.
|
Received: 15 March 2022
Revised: 23 May 2022
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075001, 61601002, and 12175001), the Anhui Provincial Key Research and Development Plan (Grant No. 2022b13020004), the Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), and the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701). |
Corresponding Authors:
Dong Wang
E-mail: dwang@ahu.edu.cn
|
Cite this article:
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋) Quantum correlation and entropic uncertainty in a quantum-dot system 2022 Chin. Phys. B 31 100303
|
[1] Heisenberg W 1927 Z. Phys. 43 172 [2] Kennard E H 1927 Z. Phys. 44 326 [3] Robertson H P 1929 Phys. Rev. 34 163 [4] Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S and Xue P 2016 Phys. Rev. A 93 052108 [5] Maccone L and Pati A K 2014 Phys. Rev. Lett. 113 260401 [6] Deutsch D 1983 Phys. Rev. Lett. 50 631 [7] Kraus K 1987 Phys. Rev. D 35 3070 [8] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103 [9] Renes J M and Boilea J C 2009 Phys. Rev. Lett. 103 020402 [10] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659 [11] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752 [12] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757 [13] Dolatkhah H, Haseli S, Salimi S and Khorashad A S 2019 Quantum Inf. Process. 18 13 [14] Zhang Z Y and Liu J M 2022 Physica A 589 126639 [15] Jiang T Y, Fang Y Y, Li Y H, Xu X Y and Liu J M 2022 Ann. Phys. (Berlin) 534 2100352 [16] Li L J, Ming F, Song X K, Ye L and Wang D 2022 Acta Phys. Sin. 71 070302 (in Chinese) [17] Konig R, Wehner S and Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962 [18] Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory 61 1093 [19] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [20] N J Cerf, M Bourennane, A Karlsson and Gisin N 2002 Phys. Rev. Lett. 88 127902 [21] Koashi M 2009 New J. Phys. 11 045018 [22] Grosshans F and Cerf N J 2004 Phys. Rev. Lett. 92 047905 [23] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206 [24] Hall M J W and Wiseman H M 2012 New J. Phys. 14 033040 [25] Yu C S 2017 Phys. Rev. A 95 042337 [26] Jarzyna M and Demkowicz-Dobrzański R 2015 New J. Phys. 17 013010 [27] Hu M L and Fan H 2013 Phys. Rev. A 88 014105 [28] Rodriguez E B and Aguilar L M A 2018 Sci. Rep. 8 4010 [29] Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S and Ye L 2018 Ann. Phys. (Berlin) 530 1800080 [30] Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D and Ye L 2019 Front. Phys. 14 31601 [31] Xie B F, Ming F, Wang D, L Ye and Chen J L 2021 Phys. Rev. A 104 062204 [32] Li L J, Ming F, Song X K, Ye L and Wang D 2021 Eur. Phys. J. C 81 728 [33] Li L J, Ming F, Shi W N, Ye L and Wang D 2021 Physica E 133 114802 [34] Berrada K 2020 Physica E 116 113784 [35] Chotorlishvili L, Gudyma A, Waetzel J, Ernst A and Berakdar J 2019 Phys. Rev. B 100 174413 [36] Lee B, Pursley B C, Carter S G, Economou S E, Yakes M K, Grim J Q, Bracker A S and Gammon D 2019 Phys. Rev. B 100 125438 [37] M Pustilnik and Glazman L I 2000 Phys. Rev. Lett. 85 2993 [38] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [39] Luo S L 2008 Phys. Rev. A 77 042303 [40] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404 [41] Wang D, Ming F, Hu M L and Ye L 2019 Ann. Phys. (Berlin) 531 1900124 [42] Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K and Sudha 2012 Phys. Rev. A 86 042105 [43] Adabi F, Salimi S and Haseli S 2016 Phys. Rev. A 93 062123 [44] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308 [45] Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322 [46] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|