Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098506    DOI: 10.1088/1674-1056/ac7a15
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bioinspired tactile perception platform with information encryption function

Zhi-Wen Shi(石智文)1,2, Zheng-Yu Ren(任征宇)2, Wei-Sheng Wang(王伟胜)1,2, Hui Xiao(肖惠)2, Yu-Heng Zeng(曾俞衡)2, and Li-Qiang Zhu(竺立强)1,2,†
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms. Inspired by cutaneous perceptual functions, a bionic tactile perceptual platform is proposed. PDMS-based tactile sensors act as bionic skin touch receptors. Flexible indium tin oxide neuromorphic transistors fabricated with a single-step mask processing act as artificial synapses. Thus, the tactile perceptual platform possesses the ability of information processing. Interestingly, the flexible tactile perception platform can find applications in information encryption and decryption. With adoption of cipher, signal transmitted by the perception platform is encrypted. Thus, the security of information transmission is effectively improved. The flexible tactile perceptual platform would have potentials in cognitive wearable devices, advanced human-machine interaction system, and intelligent bionic robots.
Keywords:  flexible oxide neuromorphic transistor      tactile perception platform      information encryption  
Received:  20 April 2022      Revised:  28 May 2022      Accepted manuscript online:  18 June 2022
PACS:  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51972316) and Ningbo Key Scientific and Technological Project (Grant No. 2021Z116).
Corresponding Authors:  Li-Qiang Zhu     E-mail:  zhuliqiang@nbu.edu.cn,lqzhu@nimte.ac.cn

Cite this article: 

Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强) Bioinspired tactile perception platform with information encryption function 2022 Chin. Phys. B 31 098506

[1] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[2] Schneider P, Walters W P, Plowright A T, Sieroka N, Listgarten J, Goodnow R A, Fisher J, Jansen J M, Duca J S, Rush T S, Zentgraf M, Hill J E, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C and Schneider G 2019 Nat. Rev. Drug. Discov. 19 353
[3] Liu X X, Rivera S C, Moher D, Calvert M J and Denniston A K 2019 Nat. Med. 26 1364
[4] Paek S and Kim N 2021 Sustainability 13 7941
[5] Schwalbe N and Wahl B 2020 Lancet 395 1579
[6] Guo Y L, Wang H Y, Hu Q Y, Liu H, Liu L and Bennamoun M 2021 IEEE Trans. Pattern Anal. Mach. Intell. 43 4338
[7] Song H, Bai J N, Yi Y, Wu J S and Liu L J 2020 IEEE Comput. Intell. Mag. 15 44
[8] Ullman S 2019 Science 363 692
[9] Kumar N, Patel M, Nguyen T T, Bhatnagar P and Kim J 2022 Mater. Today Chem. 23 100681
[10] Zhu J D, Zhang T, Yang Y C and Huang R 2020 Appl. Phys. Rev. 7 011312
[11] Hu L X, Fu S, Chen Y H, Cao H T, Liang L Y, Zhang H L, Gao J H, Wang J R and Zhuge F 2017 Adv. Mater. 29 1606927
[12] Huh W, Lee D and Lee C H 2020 Adv. Mater. 32 2002092
[13] Yan X B, Zhao J H, Liu S, Zhou Z Y, Liu Q, Chen J S and Liu X Y 2018 Adv. Funct. Mater. 28 1705320
[14] Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
[15] Fu Y, Kong L A, Chen Y, Wang J X, Qian C, Yuan Y B, Sun J, Gao Y L and Wan Q 2018 ACS Appl. Mater. Interfaces 10 26443
[16] Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Mater. 31 1900379
[17] Cho S W, Kwon S M, Lee M, Jo J W, Heo J S, Kim Y H, Cho H K and Park S K 2019 Nano Energy 66 104097
[18] Peng Z H, Wu F C, Jiang L, Cao G S, Jiang B, Cheng G, Ke S W, Chang K C, Li L and Ye C 2021 Adv. Funct. Mater. 31 2107131
[19] Yang Q, Yang H H, Lv D X, Yu R J, Li E L, He L H, Chen Q Z, Chen H P and Guo T L 2021 ACS Appl. Mater. Interfaces 13 8672
[20] Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y and Lu W D 2017 Nat. Nanotechnol. 12 784
[21] Wang Z Q, Zeng T, Ren Y Y, Lin Y, Xu H Y, Zhao X N, Liu Y C and Ielmini D 2020 Nat. Commun. 11 1510
[22] Li Y, Xuan Z H, Lu J K, Wang Z R, Zhang X M, Wu Z H, Wang Y Z, Xu H, Dou C M, Kang Y, Liu Q, Lv H B and Shang D S 2021 Adv. Funct. Mater. 31 2100042
[23] Wan Q, Jiang X Y, Negroiu A M, Lu S G, McKay K S and Abrams T W 2012 Nat. Neurosci. 15 1144
[24] Stein B E, Stanford T R and Rowland B A 2014 Nat. Rev. Neurosci. 15 520
[25] Pearson J 2019 Nat. Rev. Neurosci. 20 624
[26] Tan H W, Tao Q Z, Pande I, Majumdar S, Liu F, Zhou Y F, Persson P O A, Rosen J and Van Dijken S 2020 Nat. Commun. 11 1369
[27] Ma Y N, Yue Y, Zhang H, Cheng F, Zhao W Q, Rao J Y, Luo S J, Wang J, Jiang X L, Liu Z T, Liu N S and Gao Y H 2018 ACS Nano 12 3209
[28] Ge G, Zhang Y Z, Shao J J, Wang W J, Si W L, Huang W and Dong X C 2018 Adv. Funct. Mater. 28 1802576
[29] Yoon S G, Park B J and Chang S T 2017 ACS Appl. Mater. Interfaces 9 36206
[30] Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K and Zhai T Y 2018 Nano Energy 51 45
[31] Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y and Jung H T 2018 ACS Nano 12 986
[32] Fu H R, Zhao Y, Xie T, Han M L, Ma L F and Zang S Q 2018 J. Mater. Chem. C 6 6440
[33] Yang J C, Mun J, Kwon S Y, Park S, Bao Z N and Park S 2019 Adv. Mater. 31 1904765
[34] Guo Y, Zhong M J, Fang ZW, Wan P B and Yu G H 2019 Nano Lett. 19 1143
[35] Peng X, Dong K, Ye C Y, Jiang Y, Zhai S Y, Cheng R W, Liu D, Gao X P, Wang J and Wang Z L 2020 Sci. Adv. 6 eaba9624
[36] Yu Y, Nassar J, Xu C H, Min J H, Yang Y R, Dai A, Doshi R, Huang A, Song Y, Gehlhar R, Ames A D and Gao W 2020 Sci. Robot. 5 eaaz7946
[37] Kim Y, Chortos A, Xu W T, Liu Y X, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C X, Lee Y, Niu S M, Liu J, Pfattner R, Bao Z N and Lee T W 2018 Science 360 998
[38] Sundaram S, Kellnhofer P, Li Y Z, Zhu J Y, Torralba A and Matusik W 2019 Nature 569 698
[39] Wang M, Yan Z, Wang T, Cai P Q, Gao S Y, Zeng Y, Wan C J, Wang H, Pan L, Yu J, Pan S W, He K, Lu J and Chen X D 2020 Nat. Electron. 3 563
[40] Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Nat. Commun. 12 1581
[41] Tan H W, Zhou Y F, Tao Q Z, Rosen J and Van Dijken S 2021 Nat. Commun. 12 1120
[42] Liao X Q, Song W T, Zhang X Y, Yan C Q, Li T L, Ren H L, Liu C Z, Wang Y T and Zheng Y J 2020 Nat. Commun. 11 268
[43] Tian Y H, Chen X L, Xiong H K, Li H L, Dai L R, Chen J, Xing J L, Chen J, Wu X H, Hu W M, Hu Y, Huang T J and Gao W 2017 Front. Inform. Tech. El. 18 58
[44] Yu F, Cai J C, Zhu L Q, Sheikhi M, Zeng Y H, Guo W, Ren Z Y, Xiao H, Ye J C, Lin C H, Wong A B and Wu T 2020 ACS Appl. Mater. Interfaces 12 26258
[45] Abraira V E and Ginty D D 2013 Neuron 79 618
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[7] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[8] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[9] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[12] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[13] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[14] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[15] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
No Suggested Reading articles found!