INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Bioinspired tactile perception platform with information encryption function |
Zhi-Wen Shi(石智文)1,2, Zheng-Yu Ren(任征宇)2, Wei-Sheng Wang(王伟胜)1,2, Hui Xiao(肖惠)2, Yu-Heng Zeng(曾俞衡)2, and Li-Qiang Zhu(竺立强)1,2,† |
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms. Inspired by cutaneous perceptual functions, a bionic tactile perceptual platform is proposed. PDMS-based tactile sensors act as bionic skin touch receptors. Flexible indium tin oxide neuromorphic transistors fabricated with a single-step mask processing act as artificial synapses. Thus, the tactile perceptual platform possesses the ability of information processing. Interestingly, the flexible tactile perception platform can find applications in information encryption and decryption. With adoption of cipher, signal transmitted by the perception platform is encrypted. Thus, the security of information transmission is effectively improved. The flexible tactile perceptual platform would have potentials in cognitive wearable devices, advanced human-machine interaction system, and intelligent bionic robots.
|
Received: 20 April 2022
Revised: 28 May 2022
Accepted manuscript online: 18 June 2022
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51972316) and Ningbo Key Scientific and Technological Project (Grant No. 2021Z116). |
Corresponding Authors:
Li-Qiang Zhu
E-mail: zhuliqiang@nbu.edu.cn,lqzhu@nimte.ac.cn
|
Cite this article:
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强) Bioinspired tactile perception platform with information encryption function 2022 Chin. Phys. B 31 098506
|
[1] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22 [2] Schneider P, Walters W P, Plowright A T, Sieroka N, Listgarten J, Goodnow R A, Fisher J, Jansen J M, Duca J S, Rush T S, Zentgraf M, Hill J E, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C and Schneider G 2019 Nat. Rev. Drug. Discov. 19 353 [3] Liu X X, Rivera S C, Moher D, Calvert M J and Denniston A K 2019 Nat. Med. 26 1364 [4] Paek S and Kim N 2021 Sustainability 13 7941 [5] Schwalbe N and Wahl B 2020 Lancet 395 1579 [6] Guo Y L, Wang H Y, Hu Q Y, Liu H, Liu L and Bennamoun M 2021 IEEE Trans. Pattern Anal. Mach. Intell. 43 4338 [7] Song H, Bai J N, Yi Y, Wu J S and Liu L J 2020 IEEE Comput. Intell. Mag. 15 44 [8] Ullman S 2019 Science 363 692 [9] Kumar N, Patel M, Nguyen T T, Bhatnagar P and Kim J 2022 Mater. Today Chem. 23 100681 [10] Zhu J D, Zhang T, Yang Y C and Huang R 2020 Appl. Phys. Rev. 7 011312 [11] Hu L X, Fu S, Chen Y H, Cao H T, Liang L Y, Zhang H L, Gao J H, Wang J R and Zhuge F 2017 Adv. Mater. 29 1606927 [12] Huh W, Lee D and Lee C H 2020 Adv. Mater. 32 2002092 [13] Yan X B, Zhao J H, Liu S, Zhou Z Y, Liu Q, Chen J S and Liu X Y 2018 Adv. Funct. Mater. 28 1705320 [14] Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158 [15] Fu Y, Kong L A, Chen Y, Wang J X, Qian C, Yuan Y B, Sun J, Gao Y L and Wan Q 2018 ACS Appl. Mater. Interfaces 10 26443 [16] Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Mater. 31 1900379 [17] Cho S W, Kwon S M, Lee M, Jo J W, Heo J S, Kim Y H, Cho H K and Park S K 2019 Nano Energy 66 104097 [18] Peng Z H, Wu F C, Jiang L, Cao G S, Jiang B, Cheng G, Ke S W, Chang K C, Li L and Ye C 2021 Adv. Funct. Mater. 31 2107131 [19] Yang Q, Yang H H, Lv D X, Yu R J, Li E L, He L H, Chen Q Z, Chen H P and Guo T L 2021 ACS Appl. Mater. Interfaces 13 8672 [20] Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y and Lu W D 2017 Nat. Nanotechnol. 12 784 [21] Wang Z Q, Zeng T, Ren Y Y, Lin Y, Xu H Y, Zhao X N, Liu Y C and Ielmini D 2020 Nat. Commun. 11 1510 [22] Li Y, Xuan Z H, Lu J K, Wang Z R, Zhang X M, Wu Z H, Wang Y Z, Xu H, Dou C M, Kang Y, Liu Q, Lv H B and Shang D S 2021 Adv. Funct. Mater. 31 2100042 [23] Wan Q, Jiang X Y, Negroiu A M, Lu S G, McKay K S and Abrams T W 2012 Nat. Neurosci. 15 1144 [24] Stein B E, Stanford T R and Rowland B A 2014 Nat. Rev. Neurosci. 15 520 [25] Pearson J 2019 Nat. Rev. Neurosci. 20 624 [26] Tan H W, Tao Q Z, Pande I, Majumdar S, Liu F, Zhou Y F, Persson P O A, Rosen J and Van Dijken S 2020 Nat. Commun. 11 1369 [27] Ma Y N, Yue Y, Zhang H, Cheng F, Zhao W Q, Rao J Y, Luo S J, Wang J, Jiang X L, Liu Z T, Liu N S and Gao Y H 2018 ACS Nano 12 3209 [28] Ge G, Zhang Y Z, Shao J J, Wang W J, Si W L, Huang W and Dong X C 2018 Adv. Funct. Mater. 28 1802576 [29] Yoon S G, Park B J and Chang S T 2017 ACS Appl. Mater. Interfaces 9 36206 [30] Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K and Zhai T Y 2018 Nano Energy 51 45 [31] Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y and Jung H T 2018 ACS Nano 12 986 [32] Fu H R, Zhao Y, Xie T, Han M L, Ma L F and Zang S Q 2018 J. Mater. Chem. C 6 6440 [33] Yang J C, Mun J, Kwon S Y, Park S, Bao Z N and Park S 2019 Adv. Mater. 31 1904765 [34] Guo Y, Zhong M J, Fang ZW, Wan P B and Yu G H 2019 Nano Lett. 19 1143 [35] Peng X, Dong K, Ye C Y, Jiang Y, Zhai S Y, Cheng R W, Liu D, Gao X P, Wang J and Wang Z L 2020 Sci. Adv. 6 eaba9624 [36] Yu Y, Nassar J, Xu C H, Min J H, Yang Y R, Dai A, Doshi R, Huang A, Song Y, Gehlhar R, Ames A D and Gao W 2020 Sci. Robot. 5 eaaz7946 [37] Kim Y, Chortos A, Xu W T, Liu Y X, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C X, Lee Y, Niu S M, Liu J, Pfattner R, Bao Z N and Lee T W 2018 Science 360 998 [38] Sundaram S, Kellnhofer P, Li Y Z, Zhu J Y, Torralba A and Matusik W 2019 Nature 569 698 [39] Wang M, Yan Z, Wang T, Cai P Q, Gao S Y, Zeng Y, Wan C J, Wang H, Pan L, Yu J, Pan S W, He K, Lu J and Chen X D 2020 Nat. Electron. 3 563 [40] Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Nat. Commun. 12 1581 [41] Tan H W, Zhou Y F, Tao Q Z, Rosen J and Van Dijken S 2021 Nat. Commun. 12 1120 [42] Liao X Q, Song W T, Zhang X Y, Yan C Q, Li T L, Ren H L, Liu C Z, Wang Y T and Zheng Y J 2020 Nat. Commun. 11 268 [43] Tian Y H, Chen X L, Xiong H K, Li H L, Dai L R, Chen J, Xing J L, Chen J, Wu X H, Hu W M, Hu Y, Huang T J and Gao W 2017 Front. Inform. Tech. El. 18 58 [44] Yu F, Cai J C, Zhu L Q, Sheikhi M, Zeng Y H, Guo W, Ren Z Y, Xiao H, Ye J C, Lin C H, Wong A B and Wu T 2020 ACS Appl. Mater. Interfaces 12 26258 [45] Abraira V E and Ginty D D 2013 Neuron 79 618 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|