|
|
Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet |
Li Zhang(张力)1, Dong Pan(潘东)2, Yuanjie Chen(陈元杰)1, Jianhua Zhao(赵建华)2, and Hongqi Xu(徐洪起)1,3,† |
1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China; 2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract A gated Hall-bar device is made from an epitaxially grown, free-standing InSb nanosheet on a hexagonal boron nitride (hBN) dielectric/graphite gate structure and the electron transport properties in the InSb nanosheet are studied by gate-transfer characteristic and magnetotransport measurements at low temperatures. The measurements show that the carriers in the InSb nanosheet are of electrons and the carrier density in the nanosheet can be highly efficiently tuned by the graphite gate. The mobility of the electrons in the InSb nanosheet is extracted from low-field magneotransport measurements and a value of the mobility exceeding $\sim 1.8\times10^4$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ is found. High-field magentotransport measurements show well-defined Shubnikov-de Haas (SdH) oscillations in the longitudinal resistance of the InSb nanosheet. Temperature-dependent measurements of the SdH oscillations are carried out and key transport parameters, including the electron effective mass $m^{\ast }\sim 0.028 m_{0}$ and the quantum lifetime $\tau \sim 0.046 $ ps, in the InSb nanosheet are extracted. It is for the first time that such experimental measurements have been reported for a free-standing InSb nanosheet and the results obtained indicate that InSb nanosheet/hBN/graphite gate structures can be used to develop advanced quantum devices for novel physics studies and for quantum technology applications.
|
Received: 05 April 2022
Revised: 20 May 2022
Accepted manuscript online: 29 May 2022
|
PACS:
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by National Key Research and Development Program of China (Grant Nos. 2017YFA0303304 and 2016YFA0300601), the National Natural Science Foundation of China (Grant Nos. 92165208, 92065106, 61974138, 11874071, 91221202, and 91421303), and the Beijing Academy of Quantum Information Sciences (Grant No. Y18G22). Dong Pan also acknowledges the support from the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant Nos. 2017156 and Y2021043). |
Corresponding Authors:
Hongqi Xu
E-mail: hqxu@pku.edu.cn
|
Cite this article:
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起) Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet 2022 Chin. Phys. B 31 098507
|
[1] Gilbertson A M, Kormanyos A, Buckle P D, Fearn M, Ashley T, Lambert C J, Solin S A and Cohen L F 2011 Appl. Phys. Lett. 99 242101 [2] Kallaher R L, Heremans J J, Goel N, Chung S J and Santos M B 2010 Phys. Rev. B 81 075303 [3] Nedniyom B, Nicholas R J, Emeny M T, Buckle L, Gilbertson A M, Buckle P D and Ashley T 2009 Phys. Rev. B 80 125328 [4] Chen Y, Huang S, Pan D, Xue J, Zhang L, Zhao J and Xu H Q 2021 npj 2D Materials and Applications 5 3 [5] Ahish S, Sharma D, Vasantha M H and Kumar Y B N 2016 IEEE Computer Society Annual Symposium on VLSI pp. 105-109 [6] Yang Z, Heischmidt B, Gazibegovic S, Badawy G, Car D, Crowell P A, Bakkers E and Pribiag V S 2020 Nano Lett. 20 3232 [7] Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 9 3151 [8] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [9] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003 [10] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795 [11] Deng M, Yu C, Huang G, Larsson M, Caroff P and Xu H 2012 Nano Lett. 12 6414 [12] Gazibegovic S, Car D, Zhang H, et al. 2017 Nature 548 434 [13] Sau J D, Clarke D J and Tewari S 2011 Phys. Rev. B 84 094505 [14] van Heck B, Akhmerov A R, Hassler F, Burrello M and Beenakker C W J 2012 New J. Phys. 14 035019 [15] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K and Alicea J 2016 Phys. Rev. X 6 031016 [16] Hell M, Leijnse M and Flensberg K 2017 Phys. Rev. Lett. 118 107701 [17] Lehner C A, Tschirky T, Ihn T, Dietsche W, Keller J, Fält S and Wegscheider W 2018 Phys. Rev. Mater. 2 054601 [18] Lei Z, Lehner C A, Cheah E, Karalic M, Mittag C, Alt L, Scharnetzky J, Wegscheider W, Ihn T and Ensslin K 2019 Appl. Phys. Lett. 115 012101 [19] Ke C T, Moehle C M, de Vries F K, Thomas C, Metti S, Guinn C R, Kallaher R, Lodari M, Scappucci G, Wang T T, Diaz R E, Gardner G C, Manfra M J and Goswami S 2019 Nat. Commun. 10 3764 [20] Lei Z, Lehner C A, Rubi K, Cheah E, Karalic M, Mittag C, Alt L, Scharnetzky J, Märki P and Zeitler U 2020 Phys. Rev. Research 2 033213 [21] Pan D, Fan D X, Kang N, Zhi J H, Yu X Z, Xu H Q and Zhao J H 2016 Nano Lett. 16 834 [22] de la Mata M, Leturcq R, Plissard S R, Rolland C, Magen C, Arbiol J and Caroff P 2016 Nano Lett. 16 825 [23] Gazibegovic S, Badawy G, Buckers T L J, Leubner P, Shen J, de Vries F K, Koelling S, Kouwenhoven L P, Verheijen M A and Bakkers E 2019 Adv. Mater. 31 1808181 [24] Verma I, Salimian S, Zannier V, Heun S, Rossi F, Ercolani D, Beltram F and Sorba L 2021 ACS Appl. Nano Mater. 4 5825 [25] Kang N, Fan D, Zhi J, Pan D, Li S, Wang C, Guo J, Zhao J and Xu H 2019 Nano Lett. 19 561 [26] Zhi J, Kang N, Li S, Fan D, Su F, Pan D, Zhao S, Zhao J and Xu H 2019 physica status solidi (b) 256 1800538 [27] Zhi J, Kang N, Su F, Fan D, Li S, Pan D, Zhao S P, Zhao J and Xu H Q 2019 Phys. Rev. B 99 245302 [28] de Vries F K, Sol M L, Gazibegovic S, Veld R L M o h, Balk S C, Car D, Bakkers E P A M, Kouwenhoven L P and Shen J 2019 Phys. Rev. Research 1 032031 [29] Xue J, Chen Y, Pan D, Wang J Y, Zhao J, Huang S and Xu H Q 2019 Appl. Phys. Lett. 114 023108 [30] Chen Y, Huang S, Mu J, Pan D, Zhao J and Xu H Q 2021 Chin. Phys. B 30 128501 [31] Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806 [32] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722 [33] Chen K, Wan X, Liu D, Kang Z, Xie W, Chen J, Miao Q and Xu J 2013 Nanoscale 5 5784 [34] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P and Hone J 2015 Nat. Nanotechnol. 10 534 [35] Joo M K, Moon B H, Ji H, Han G H, Kim H, Lee G, Lim S C, Suh D and Lee Y H 2017 ACS Appl. Mater. Interfaces 9 5006 [36] Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L and Muller D 2013 Science 342 614 [37] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J and Steele G A 2014 2D Mater. 1 011002 [38] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P and Booth T J 2016 Nat. Commun. 7 11894 [39] Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T and Moriyama S 2020 ACS Appl. Mater. Interfaces 12 8533 [40] Wu Z, Xu S, Lu H, Khamoshi A, Liu G B, Han T, Wu Y, Lin J, Long G, He Y, Cai Y, Yao Y, Zhang F and Wang N 2016 Nat. Commun. 7 12955 [41] Movva H C P, Fallahazad B, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K and Tutuc E 2017 Phys. Rev. Lett. 118 247701 [42] Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K and Tutuc E 2018 Phys. Rev. B 97 201407 [43] Li L, Ye G J, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T and Yang L 2015 Nat. Nanotechnol. 10 608 [44] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y and Wang N 2015 Nat. Commun. 6 7315 [45] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593 [46] Yuan K, Yin R, Li X, Han Y, Wu M, Chen S, Liu S, Xu X, Watanabe K, Taniguchi T, Muller D A, Shi J, Gao P, Wu X, Ye Y and Dai L 2019 Adv. Funct. Mater. 29 1904032 [47] Zhang L, Chen Y, Pan D, Huang S, Zhao J and Xu H Q 2022 Nanotechnology 33 325303 [48] Gul O, van Woerkom D J, Weperen I, Car D, Plissard S R, Bakkers E P and Kouwenhoven L P 2015 Nanotechnology 26 215202 [49] Guo Y, Wei X, Shu J, Liu B, Yin J, Guan C, Han Y, Gao S and Chen Q 2015 Appl. Phys. Lett. 106 103109 [50] Hollinger G, Bergignat E, Joseph J and Robach Y 1983 J. Vac. Sci. Technol. B 1 778 [51] Sun J, Lind E, Maximov I and Xu H Q 2011 IEEE Electron Dev. Lett. 32 131 [52] Dingle R B 1952 Proc. R. Soc. Lond. A 211 517 [53] Coleridge P T 1991 Phys. Rev. B 44 3793 [54] Das Sarma S and Stern F 1985 Phys. Rev. B 32 8442 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|