Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 096201    DOI: 10.1088/1674-1056/ac6157
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

In situ study of calcite-III dimorphism using dynamic diamond anvil cell

Xia Zhao(赵霞)1,2, Sheng-Hua Mei(梅升华)1,†, Zhi Zheng(郑直)1, Yue Gao(高悦)1,2, Jiang-Zhi Chen(陈姜智)1, Yue-Gao Liu(刘月高)1, Jian-Guo Sun(孙建国)3, Yan Li(李艳)1,2, and Jian-Hui Sun(孙建辉)1
1 CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences(CAS), Sanya 572000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Mechanical Engineering, National University of Singapore(NUS), Singapore 117575, Singapore
Abstract  The phase transitions among the high-pressure polymorphic forms of CaCO3 (cc-I, cc-II, cc-III, and cc-IIIb) are investigated by dynamic diamond anvil cell (dDAC) and in situ Raman spectroscopy. Experiments are carried out at room temperature and high pressures up to 12.8 GPa with the pressurizing rate varying from 0.006 GPa/s to 0.056 GPa/s. In situ observation shows that with the increase of pressure, calcite transforms from cc-I to cc-II at ~ 1.5 GPa and from cc-II to cc-III at ~ 2.5 GPa, and transitions are independent of the pressurizing rate. Further, as the pressure continues to increase, the cc-IIIb begins to appear and coexists with cc-III within a pressure range that is inversely proportional to the pressurizing rate. At the pressurizing rates of 0.006, 0.012, 0.021, and 0.056 GPa/s, the coexistence pressure ranges of cc-III and cc-IIIb are 2.8 GPa-9.8 GPa, 3.1 GPa-6.9 GPa, 2.7 GPa-6.0 GPa, and 2.8 GPa-4.5 GPa, respectively. The dependence of the coexistence on the pressurizing rate may result from the influence of pressurizing rate on the activation process of transition by reducing the energy barrier. The higher the pressurizing rate, the lower the energy barrier is, and the easier it is to pull the system out of the coexistence state. The results of this in situ study provide new insights into the understanding of the phase transition of calcite.
Keywords:  calcite-III      dimorphism      dynamic diamond anvil cell      in situ Raman spectroscopy      pressurizing rate  
Received:  09 December 2021      Revised:  21 March 2022      Accepted manuscript online:  28 March 2022
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  47.80.Fg (Pressure and temperature measurements)  
  91.65.-n (Mineralogy and petrology)  
Fund: Project supported by the Fund from the Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC029) and the National Natural Science Foundation of China (Grant No. 41674097).
Corresponding Authors:  Sheng-Hua Mei     E-mail:  mei@idsse.ac.cn

Cite this article: 

Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉) In situ study of calcite-III dimorphism using dynamic diamond anvil cell 2022 Chin. Phys. B 31 096201

[1] Dasgupta R and Hirschmann M M 2010 Earth and Planetary Science Letters 298 1
[2] Merlini M, Hanfland M and Crichton W A 2012 Earth and Planetary Science Letters 333 265
[3] Liu Y, Li W, Lu X, Liu Y, Ruan B and Liu X 2017 Ore Geology Reviews 91 419
[4] Zhang Z W, Wang Y L, Qian B, Liu Y G, Zhang D Y, Lu P R and Dong J 2018 Ore Geology Reviews 96 236
[5] Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O and Kikegawa T 2001 American Mineralogist 86 997
[6] Hagiya K, Matsui M, Kimura Y and Akahama Y 2005 Journal of Mineralogical and Petrological Sciences 100 31
[7] Catalli K and Williams Q 2005 American Mineralogist 90 1679
[8] Ono S, Kikegawa T and Ohishi Y 2007 American Mineralogist 92 1246
[9] Oganov A R, Glass C W and Ono S 2006 Earth and Planetary Science Letters 241 95
[10] Oganov A R, Ono S, Ma Y, Glass C W and Garcia A 2008 Earth and Planetary Science Letters 273 38
[11] Gavryushkin P N, Martirosyan N S, Inerbaev T M, Popov Z I, Rashchenko S V, Likhacheva A Y, Lobanov S S, Goncharov A F, Prakapenka V B and Litasov K D 2017 Crystal Growth and Design 17 6291
[12] Li X, Zhang Z, Lin J F, Ni H, Prakapenka V B and Mao Z 2018 Geophysical Research Letters 45 1355
[13] Kushiro I 1975 Earth and Planetary Science Letters 28 116
[14] Ague J J and Nicolescu S 2014 Nature Geoscience 7 355
[15] Kaminsky F, Matzel J, Jacobsen B, Hutcheon I and Wirth R 2016 Mineralogy and Petrology 110 379
[16] Wirth R, Kaminsky F, Matsyuk S and Schreiber A 2009 Earth and Planetary Science Letters 286 292
[17] Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson D G, Pamato M G, Alvaro M, Peruzzo L, Gurney J J, Moore A E and Davidson J 2018 Nature 555 237
[18] Hou M, Zhang Q, Tao R, Liu H, Kono Y, Mao H K, Yang W, Chen B and Fei Y 2019 Nat. Commun. 10 1963
[19] Hacker B R, Kirby S H and Bohlen S R 1992 Science 258 110
[20] Liu L G and Mernagh T P 1990 American Mineralogist 75 801
[21] Merlini M, Crichton W A, Chantel J, Guignard J and Poli S 2014 Mineralogical Magazine 78 225
[22] Pippinger T, Miletich R, Merlini M, Lotti P, Schouwink P, Yagi T, Crichton W A and Hanfland M 2014 Physics and Chemistry of Minerals 42 29
[23] Belkofsi R, Adjaoud O and Belabbas I 2018 Modelling and Simulation in Materials Science and Engineering 26 065004
[24] Koch-Mueller M, Jahn S, Birkholz N, Ritter E and Schade U 2016 Physics and Chemistry of Minerals 43 545
[25] Yuan X, Gao C and Gao J 2019 Mineralogical Magazine 83 191
[26] Beaussier S J, Gerya T V and Burg J P 2019 Tectonophysics 763 1
[27] Hynes A 1987 Precambrian Research 36 189
[28] Choe H and Dyment J 2021 Eaeth and Planetary Science Letters 561 116787
[29] Choe H and Dyment J 2020 Geophysical Research Letters 47 e2019GL085975
[30] Tao R, Zhang L and Zhang L 2020 Geoscience Frontiers 11 915
[31] Audetat A, Pettke T and Dolejs D 2004 Lithos 72 147
[32] Katz S and Schock R N 1968 American Mineralogist 53 1910
[33] Cifrulak S D 1970 American Mineralogist 55 815
[34] Fong M Y and Nicol M 1971 J. Chem. Phys. 54 579
[35] Adams D M and Pogson M 1988 Spectrochimica Acta Part A:Molecular Spectroscopy 44 745
[36] Williams Q, Collerson B and Knittle E 1992 American Mineralogist 77 1158
[37] Gillet P, Biellmann C, Reynard B and McMillan P 1993 Physics and Chemistry of Minerals 20 1
[38] Wang S and Zheng H 2011 Spectroscopy and Spectral Analysis 31 2117
[39] Bayarjargal L, Fruhner C J, Schrodt N and Winkler B 2018 Physics of the Earth and Planetary Interiors 281 31
[40] Fu W and Yuan X 2019 Spectroscope and Spectral Analysis 39 2053 (in Chinese)
[41] Bischoff W D, Sharma S K and Mackenzie F T 1985 American Mineralogist 70 581
[42] Merrill L and Bassett W A 1975 Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry 31 343
[43] Ono S, Kikegawa T, Ohishi Y and Tsuchiya J 2005 American Mineralogist 90 667
[44] Yuan C, Zhang X, Zhou L, Li H, Feng S, Yang K and Zhu X 2021 Journal of Molecular Liquids 328 115444
[45] Lin C, Smith J S, Sinogeikin S V, Park C, Kono Y, Kenney-Benson C, Rod E and Shen G 2016 J. Appl. Phys. 119 045902
[46] Chen J Y, Kim M, Yoo C S, Liermann H P and Evans W 2014 J. Phys.:Conf. Ser. 500 142006
[47] Velisavljevic N, Sinogeikin S, Saavedra R, Chellappa R S, Rothkirch A, Dattelbaum D M, Konopkova Z, Liermann H P, Bishop M, Tsoi G M and Vohra Y K 2014 J. Phys.:Conf. Ser. 500 032020
[48] Chen J Y and Yoo C S 2011 Proc. Natl. Acad. Sci. USA 108 7685
[49] Mao H K and Bell P M 1978 Science 200 1145
[50] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[51] Jamieson J C 1957 Journal of Geology 65 334
[52] Bridgman P W 1939 American Journal of Science 237 7
[53] Lin C and Tse J S 2021 J. Phys. Chem. Lett. 12 8024
[1] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[2] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[3] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[7] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[8] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[11] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[12] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[13] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[14] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[15] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
No Suggested Reading articles found!