CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001) |
Qingrong Shao(邵倾蓉)1, Jing Meng(孟婧)1, Xiaoyan Zhu(朱晓艳)1, Yali Xie(谢亚丽)2, Wenjuan Cheng(程文娟)1, Dongmei Jiang(蒋冬梅)1, Yang Xu(徐杨)1, Tian Shang(商恬)1, and Qingfeng Zhan(詹清峰)1,† |
1 Key Laboratory of Polar Materials and Devices(MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; 2 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract Exchange coupling across the interface between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy, which has been extensively studied due to the important application in magnetic materials and devices. In this work, we observed a fourfold magnetic anisotropy in amorphous CoFeB layer when exchange coupling to an adjacent FeRh layer which is epitaxially grown on an SrTiO3(001) substrate. As the temperature rises from 300 K to 400 K, FeRh film undergoes a phase transition from AFM to FM phase, the induced fourfold magnetic anisotropy in the CoFeB layer switches the orientation from the FeRh$\langle 110\rangle $ to FeRh$\langle 100\rangle $ directions and the strength is obviously reduced. In addition, the effective magnetic damping as well as the two-magnon scattering of the CoFeB/FeRh bilayer also remarkably increase with the occurrence of magnetic phase transition of FeRh. No exchange bias is observed in the bilayer even when FeRh is in the nominal AFM state, which is probably because the residual FM FeRh moments located at the interface can well separate the exchange coupling between the below pinned FeRh moments and the CoFeB moments.
|
Received: 22 February 2022
Revised: 05 April 2022
Accepted manuscript online: 14 April 2022
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.60.Nt
|
(Magnetic annealing and temperature-hysteresis effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874150, 51871233, and 12174103) and the Natural Science Foundation of Shanghai (Grant Nos. 21ZR1420500 and 21JC1402300). |
Corresponding Authors:
Qingfeng Zhan
E-mail: qfzhan@phy.ecnu.edu.cn
|
Cite this article:
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰) Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001) 2022 Chin. Phys. B 31 087503
|
[1] Zhan Q F, Vandezande S, Temst K and Van Haesendonck C 2009 Phys. Rev. B 80 094416 [2] Huang Z C, Zhai Y, Lu Y X, Li G D, Wong P K J, Xu Y B, Xu Y X and Zhai H R 2008 Appl. Phys. Lett. 92 113105 [3] Ahmad E, Lopez-Diaz L, Gu E and Bland J A C 2000 J. Appl. Phys. 88 354 [4] Dai G H, Zhan Q F, Liu Y W, Yang H L, Zhang X S, Chen B and Li R W 2012 Appl. Phys. Lett. 100 122407 [5] Tang Z H, Wang B M, Yang H L, Xu X Y, Liu Y W, Sun D D, Xia L X, Zhan Q F, Chen B, Tang M H, Zhou Y C, Wang J L and Li R W 2014 Appl. Phys. Lett. 105 103504 [6] Berkowitz A E and Takano K 1999 J. Magn. Magn. Mater. 200 552 [7] Carey M J, Berkowitz A E, Borchers J A and Erwin R W 1993 Phys. Rev. B 47 9952 [8] Nogues J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203 [9] Parkin S S P, Roche K P, Samant M G, Rice P M, Beyers R B, Scheuerlein R E, O'Sullivan E J, Brown S L, Bucchigano J, Abraham D W, Lu Y, Rooks M, Trouilloud P L, Wanner R A and Gallagher W J 1999 J. Appl. Phys. 85 5828 [10] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodriguez A, Scholl A, Wang S X and Ramesh R 2008 Nat. Mater. 7 678 [11] Zhan Q F and Krishnan K M 2010 Appl. Phys. Lett. 96 112506 [12] Zhang W, Bowden M E and Krishnan K M 2011 Appl. Phys. Lett. 98 092503 [13] Fullerton E E, Jiang J S and Bader S D 1999 J. Magn. Magn. Mater. 200 392 [14] Zeng H, Li J, Liu J P, Wang Z L and Sun S H 2002 Nature 420 395 [15] Liu J P, Luo C P, Liu Y and Sellmyer D J 1998 Appl. Phys. Lett. 72 483 [16] Kouvel J S and Hartelius C C 1962 J. Appl. Phys. 33 1343 [17] Moruzzi V L and Marcus P M 1992 Phys. Rev. B 46 2864 [18] Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A and Dovletov A K 1996 J. Appl. Phys. 79 1689 [19] Sharma M, Aarbogh H M, Thiele J U, Maat S, Fullerton E E and Leighton C 2011 J. Appl. Phys. 109 083913 [20] Thiele J U, Maat S and Fullerton E E 2003 Appl. Phys. Lett. 82 2859 [21] Jen S U, Yao Y D, Chen Y T, Wu J M, Lee C C, Tsai T L and Chang Y C 2006 J. Appl. Phys. 99 053701 [22] Fuji Y, Kaji S, Hara M, Higashi Y, Hori A, Okamoto K, Nagata T, Baba S, Yuzawa A, Otsu K, Masunishi K, Ono T and Fukuzawa H 2018 Appl. Phys. Lett. 112 062405 [23] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721 [24] Paluskar P V, Kohlhepp J T, Swagten H J M, Koopmans B, Wolters R, Boeve H and Snoeck E 2007 J. Phys. D:Appl. Phys. 40 1234 [25] Wang D, Nordman C, Daughton J M, Qian Z, Fink J, Wang D, Nordman C, Daughton J M, Qian Z and Fink J 2004 IEEE T. Magn. 40 2269 [26] M, Komiyama K, Shirota Y, Fujiwara Y, Tsunashima S and Matsuuras 1997 J. Magn. Magn. Mater. 165 308 [27] Feng T and Childress J R 1999 J. Appl. Phys. 85 4937 [28] Oguz K and Coey J M D 2009 J. Magn. Magn. Mater. 321 1009 [29] Mizuguchi M, Suzuki Y, Nagahama T and Yuasa S 2007 Appl. Phys. Lett. 91 012507 [30] Kipgen L, Fulara H, Raju M and Chaudhary S 2012 J. Magn. Magn. Mater. 324 3118 [31] Maat S, Thiele J U and Fullerton E E 2005 Phys. Rev. B 72 214432 [32] Fan R, Kinane C J, Charlton T R, Dorner R, Ali M, de Vries M A, Brydson R M D, Marrows C H, Hickey B J, Arena D A, Tanner B K, Nisbet G and Langridge S 2010 Phys. Rev. B 82 184418 [33] Pressacco F, Uhliotar V, Gatti M, Bendounan A, Fullerton E E and Sirotti F 2016 Sci. Rep. 6 22383 [34] Ding Y, Arena D A, Dvorak J, Ali M, Kinane C J, Marrows C H, Hickey B J and Lewis L H 2008 J. Appl. Phys. 103 07B515 [35] Suzuki I, Koike T, Itoh M, Taniyama T and Sato T 2009 J. Appl. Phys. 105 07E501 [36] Han G C, Qiu J J, Yap Q J, Luo P, Laughlin D E, Zhu J G, Kanbe T and Shige T 2013 J. Appl. Phys. 113 17C107 [37] Xie Y L, Zhan Q F, Shang T A, Yang H L, Wang B M, Tang J and Li R W 2017 AIP Adv. 7 056314 [38] Kim C G, Rheem Y W, Kim C O, Shalyguina E E and Ganshina E A 2003 J. Magn. Magn. Mater. 262 412 [39] Xie Y, Zhan Q, Hu Y, Hu X, Chi X, Zhang C, Yang H, Xie W, Zhu X, Gao J, Cheng W, Jiang D and Li R W 2020 NPG Asia Mater. 12 67 [40] Stiles M D and McMichael R D 2001 Phys. Rev. B 63 064405 [41] Chang Y C, Hsiao S N, Liu S H, Su S H, Chiu K F, Hsieh W C, Chen S K, Lin Y G, Lee H Y, Sung C K and Duh J G 2015 J. Appl. Phys. 117 17D154 [42] Tomiyasu K, Inami T and Ikeda N 2004 Phys. Rev. B 70 184411 [43] Bai L H, Gui Y S, Wirthmann A, Recksiedler E, Mecking N, Hu C M, Chen Z H and Shen S C 2008 Appl. Phys. Lett. 92 032504 [44] Qiao S, Nie S, Zhao J, Huo Y, Wu Y and Zhang X 2013 Appl. Phys. Lett. 103 152402 [45] Mecking N, Gui Y S and Hu C M 2007 Phys. Rev. B 76 224430 [46] Ruiz-Calaforra A, Bracher T, Lauer V, Pirro P, Heinz B, Geilen M, Chumak A V, Conca A, Leven B and Hillebrands B 2015 J. Appl. Phys. 117 163901 [47] Chen Z, Kong W, Mi K, Chen G, Zhang P, Fan X, Gao C and Xue D 2018 Appl. Phys. Lett. 112 122406 [48] Zhao Y, Song Q, Yang S H, Su T, Yuan W, Parkin S S P, Shi J and Han W 2016 Sci. Rep. 6 22890 [49] Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306 [50] Infante I C, Osso J O, Sanchez F and Fontcuberta J 2008 Appl. Phys. Lett. 92 012508 [51] Dubowik J, Zaleski K, Glowinski H and Goscianska I 2011 Phys. Rev. B 84 184438 [52] Belmeguenai M, Tuzcuoglu H, Gabor M S, Petrisor T, Tiusan C, Berling D, Zighem F, Chauveau T, Chérif S M and Moch P 2013 Phys. Rev. B 87 184431 [53] McCord J, Mattheis R and Elefant D 2004 Phys. Rev. B 70 094420 [54] Le Graet C, Spenato D, Pogossian S P, Dekadjevi D T and Ben Youssef J 2010 Phys. Rev. B 82 100415 [55] Weber M C, Nembach H, Hillebrands B and Fassbender J 2005 J. Appl. Phys. 97 10A701 [56] McCord J, Kaltofen R, Schmidt O G and Schultz L 2008 Appl. Phys. Lett. 92 162506 [57] Tang Y J, Roos B F P, Mewes T, Frank A R, Rickart M, Bauer M, Demokritov S O, Hillebrands B, Zhou X, Liang B Q, Chen X and Zhan W S 2000 Phys. Rev. B 62 8654 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|