CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain |
Xiao-Chen Na(那小晨)1, Nan Si(司楠)2, Feng-Ge Zhang(张凤阁)3, and Wei Jiang(姜伟)2,† |
1 School of Science, Shenyang University of Technology, Shenyang 110870, China; 2 School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; 3 School of Electric Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
|
Abstract Using an effective field theory with correlations, magnetic properties of an octahedral chain described by a mixed spin Ising model are investigated. Unique phenomena such as multiple hysteresis loops, saturation magnetization, and reverse flip of the magnetization plateaus occur when certain typical parameters are applied. These results may be helpful to further investigate the magnetic properties of one-dimensional systems and could potentially be utilized in the design of spin devices.
|
Received: 16 January 2022
Revised: 18 February 2022
Accepted manuscript online: 25 February 2022
|
PACS:
|
75.10.Pq
|
(Spin chain models)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by National Natural Science Foundation of China (Grant No. 51920105011) and the Key R&D Program of Liaoning Province of China (Grant No. 2020JH2/10300079). |
Corresponding Authors:
Wei Jiang
E-mail: 961463024@qq.com
|
Cite this article:
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟) Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain 2022 Chin. Phys. B 31 087502
|
[1] Coronado E, Galan-Mascaros J R and Marti-Gastaldo C 2008 J. Am. Chem. Soc. 130 14987 [2] Zhao Y, Qi Y, Du A, Liu J, Xiao R, Shan Y, Wu Y and Yang S H 2017 Acta Phys. Sin. 66 197501 (in Chinese) [3] Qiu M S, Guo H H, Zhang Y, Dong B J, Ali S and Yang T 2019 Chin. Phys. B 28 106103 [4] Yang T, Okano S, Berber S and Tomanek D 2006 Phys. Rev. Lett. 96 125502 [5] Colacio E, Ruiz J, Ruiz E, Cremades E, Krzystek J, Carretta S, Cano J, Guidi T, Wernsdorfer W and Brechin E K 2013 Angew. Chem. Int. Edit. 52 9130 [6] Kageyama H, Yoshimura K and Kosuge K 1998 J. Solid State Chem. 140 14 [7] Liu T F, Fu D, Gao S, Zhang Y Z, Sun H L, Su G and Liu Y J 2003 J. Am. Chem. Soc. 125 13976 [8] Clerac R, Miyasaka H, Yamashita M and Coulon C 2002 J. Am. Chem. Soc. 124 12837 [9] Lescouezec R, Vaissermann J, Ruiz-Perez C, Lloret F, Carrasco R, Julve M, Verdaguer M, Dromzee Y, Gatteschi D and Wernsdorfer W 2003 Angew. Chem. 42 1483 [10] Kageyama H, Yoshimura K and Kosuge K 1998 J. Solid State Chem. 140 14 [11] Zheng G P, Liang J Q and Liu W M 2009 Phys. Rev. B 79 014415 [12] Galisova L, Strecka J, Verkholyak T and Havadej S 2021 Physica E 125 114089 [13] Panov Y D 2020 J. Magn. Magn. Mater. 514 167224 [14] Fabrelli H, Vieira A P, Paduan A and Freitas R S 2021 J. Alloy. Compd. 853 157346 [15] Das R, Dang N T, Kalappattil V, Madhogaria R P, Kozlenko D P, Kichanov S E, Lukin E V, Rutkaukas A V, Thao T P T, Nguyen L T P, Bingham N S, Srikanth H and Phan M H 2021 J. Alloys Compd. 851 156897 [16] Galisova L, Strecka J, Verkholyak T and Havadej S 2021 Physica E 125 114089 [17] Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V V 2015 Solid State. Commun. 224 15 [18] Jabar A and Masrour R 2018 Spin 8 1850017 [19] Zhang Z D 2007 Philos. Mag. 87 5309 [20] Zhang Z D 2013 Chin. Phys. B 22 030513 [21] Žukovič M and Bobák A 2015 Physica A 436 509 [22] Zhang Z D, Suzuki O and March N H 2019 Adv. Appl. CClifford Algebras 29 12 [23] Barreto F C S and Zeks I P F B 1981 Ferroelectrics 39 1103 [24] Sarreto B F C and Fittipaldi I P 1985 Physica A 129 360 [25] Kaneyoshi T, Tucker J W and Jascur M 1992 Physica A 186 495 [26] Kaneyoshi T 2019 Physica B 561 141 [27] Si N, Wang J M, Guo A B, Zhang F, Zhang F G and Jiang W 2020 Physica E 118 113884 [28] Si N, Su X, Meng J, Miao H L, Zhang Y L and Jiang W 2020 Physica A 560 125222 [29] Zhang F, Zhang F G, Liu S Q, Meng J, Miao H L and Jiang W 2020 Chin. J. Phys. 66 390 [30] Jiang W, Wang Y N, Guo A B, Yang Y Y and Shi K L 2016 Carbon 110 41 [31] Si N, Zhang F, Jiang W and Zhang Y L 2018 Physica A 510 641 [32] Quan X W, Si N, Zhang F, Meng J, Miao H L, Zhang Y L and Jiang W 2019 Physica E 114 113574 [33] Hu J Q, Si N, Wang J, Meng J and Zhang Y L 2021 Phys. Lett. A 405 127434 [34] Si N, Zhang Y L and Jiang W 2021 Comput. Mater. Sci. 197 110594 [35] Si N, GuaY Y, Gao W C, Guo A B, Zhang Y L and Jiang W 2022 Physica A 589 126671 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|